| Step | Hyp | Ref
| Expression |
| 1 | | climsubmpt.z |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 2 | | climsubmpt.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 3 | | climsubmpt.c |
. 2
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) |
| 4 | | fvex 6201 |
. . . . 5
⊢
(ℤ≥‘𝑀) ∈ V |
| 5 | 1, 4 | eqeltri 2697 |
. . . 4
⊢ 𝑍 ∈ V |
| 6 | 5 | mptex 6486 |
. . 3
⊢ (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ∈ V |
| 7 | 6 | a1i 11 |
. 2
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ∈ V) |
| 8 | | climsubmpt.d |
. 2
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) |
| 9 | | simpr 477 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
| 10 | | climsubmpt.k |
. . . . . . 7
⊢
Ⅎ𝑘𝜑 |
| 11 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑘 𝑗 ∈ 𝑍 |
| 12 | 10, 11 | nfan 1828 |
. . . . . 6
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 13 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑗 |
| 14 | 13 | nfcsb1 3548 |
. . . . . . 7
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 |
| 15 | 14 | nfel1 2779 |
. . . . . 6
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ |
| 16 | 12, 15 | nfim 1825 |
. . . . 5
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) |
| 17 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) |
| 18 | 17 | anbi2d 740 |
. . . . . 6
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 19 | | csbeq1a 3542 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) |
| 20 | 19 | eleq1d 2686 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ)) |
| 21 | 18, 20 | imbi12d 334 |
. . . . 5
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ))) |
| 22 | | climsubmpt.a |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
| 23 | 16, 21, 22 | chvar 2262 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) |
| 24 | | eqid 2622 |
. . . . 5
⊢ (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑘 ∈ 𝑍 ↦ 𝐴) |
| 25 | 13, 14, 19, 24 | fvmptf 6301 |
. . . 4
⊢ ((𝑗 ∈ 𝑍 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 26 | 9, 23, 25 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 27 | 26, 23 | eqeltrd 2701 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) ∈ ℂ) |
| 28 | 13 | nfcsb1 3548 |
. . . . . . 7
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
| 29 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑘ℂ |
| 30 | 28, 29 | nfel 2777 |
. . . . . 6
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
| 31 | 12, 30 | nfim 1825 |
. . . . 5
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
| 32 | | csbeq1a 3542 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) |
| 33 | 32 | eleq1d 2686 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
| 34 | 18, 33 | imbi12d 334 |
. . . . 5
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ))) |
| 35 | | climsubmpt.b |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
| 36 | 31, 34, 35 | chvar 2262 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
| 37 | | eqid 2622 |
. . . . 5
⊢ (𝑘 ∈ 𝑍 ↦ 𝐵) = (𝑘 ∈ 𝑍 ↦ 𝐵) |
| 38 | 13, 28, 32, 37 | fvmptf 6301 |
. . . 4
⊢ ((𝑗 ∈ 𝑍 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
| 39 | 9, 36, 38 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
| 40 | 39, 36 | eqeltrd 2701 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗) ∈ ℂ) |
| 41 | | ovexd 6680 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) ∈ V) |
| 42 | | nfcv 2764 |
. . . . . 6
⊢
Ⅎ𝑘
− |
| 43 | 14, 42, 28 | nfov 6676 |
. . . . 5
⊢
Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) |
| 44 | 19, 32 | oveq12d 6668 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝐴 − 𝐵) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
| 45 | | eqid 2622 |
. . . . 5
⊢ (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) = (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) |
| 46 | 13, 43, 44, 45 | fvmptf 6301 |
. . . 4
⊢ ((𝑗 ∈ 𝑍 ∧ (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵) ∈ V) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
| 47 | 9, 41, 46 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
| 48 | 26, 39 | oveq12d 6668 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) − ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴 − ⦋𝑗 / 𝑘⦌𝐵)) |
| 49 | 47, 48 | eqtr4d 2659 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵))‘𝑗) = (((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑗) − ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑗))) |
| 50 | 1, 2, 3, 7, 8, 27,
40, 49 | climsub 14364 |
1
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐷)) |