![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnbl0 | Structured version Visualization version GIF version |
Description: Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
Ref | Expression |
---|---|
cnblcld.1 | ⊢ 𝐷 = (abs ∘ − ) |
Ref | Expression |
---|---|
cnbl0 | ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscl 14018 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ) | |
2 | absge0 14027 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥)) | |
3 | 1, 2 | jca 554 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥))) |
4 | 3 | adantl 482 | . . . . . . 7 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥))) |
5 | 4 | biantrurd 529 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) < 𝑅 ↔ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) < 𝑅))) |
6 | df-3an 1039 | . . . . . 6 ⊢ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅) ↔ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) < 𝑅)) | |
7 | 5, 6 | syl6rbbr 279 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅) ↔ (abs‘𝑥) < 𝑅)) |
8 | 0re 10040 | . . . . . 6 ⊢ 0 ∈ ℝ | |
9 | simpl 473 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → 𝑅 ∈ ℝ*) | |
10 | elico2 12237 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅))) | |
11 | 8, 9, 10 | sylancr 695 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅))) |
12 | 0cn 10032 | . . . . . . . . 9 ⊢ 0 ∈ ℂ | |
13 | cnblcld.1 | . . . . . . . . . . 11 ⊢ 𝐷 = (abs ∘ − ) | |
14 | 13 | cnmetdval 22574 | . . . . . . . . . 10 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(0 − 𝑥))) |
15 | abssub 14066 | . . . . . . . . . 10 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(0 − 𝑥)) = (abs‘(𝑥 − 0))) | |
16 | 14, 15 | eqtrd 2656 | . . . . . . . . 9 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(𝑥 − 0))) |
17 | 12, 16 | mpan 706 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘(𝑥 − 0))) |
18 | subid1 10301 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥) | |
19 | 18 | fveq2d 6195 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥)) |
20 | 17, 19 | eqtrd 2656 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘𝑥)) |
21 | 20 | adantl 482 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘𝑥)) |
22 | 21 | breq1d 4663 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((0𝐷𝑥) < 𝑅 ↔ (abs‘𝑥) < 𝑅)) |
23 | 7, 11, 22 | 3bitr4d 300 | . . . 4 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ (0𝐷𝑥) < 𝑅)) |
24 | 23 | pm5.32da 673 | . . 3 ⊢ (𝑅 ∈ ℝ* → ((𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅))) |
25 | absf 14077 | . . . . 5 ⊢ abs:ℂ⟶ℝ | |
26 | ffn 6045 | . . . . 5 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
27 | 25, 26 | ax-mp 5 | . . . 4 ⊢ abs Fn ℂ |
28 | elpreima 6337 | . . . 4 ⊢ (abs Fn ℂ → (𝑥 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅)))) | |
29 | 27, 28 | mp1i 13 | . . 3 ⊢ (𝑅 ∈ ℝ* → (𝑥 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅)))) |
30 | cnxmet 22576 | . . . . 5 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
31 | 13, 30 | eqeltri 2697 | . . . 4 ⊢ 𝐷 ∈ (∞Met‘ℂ) |
32 | elbl 22193 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (0(ball‘𝐷)𝑅) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅))) | |
33 | 31, 12, 32 | mp3an12 1414 | . . 3 ⊢ (𝑅 ∈ ℝ* → (𝑥 ∈ (0(ball‘𝐷)𝑅) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅))) |
34 | 24, 29, 33 | 3bitr4d 300 | . 2 ⊢ (𝑅 ∈ ℝ* → (𝑥 ∈ (◡abs “ (0[,)𝑅)) ↔ 𝑥 ∈ (0(ball‘𝐷)𝑅))) |
35 | 34 | eqrdv 2620 | 1 ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ◡ccnv 5113 “ cima 5117 ∘ ccom 5118 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 − cmin 10266 [,)cico 12177 abscabs 13974 ∞Metcxmt 19731 ballcbl 19733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-xadd 11947 df-ico 12181 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 |
This theorem is referenced by: psercnlem2 24178 efopnlem1 24402 binomcxplemdvbinom 38552 binomcxplemnotnn0 38555 |
Copyright terms: Public domain | W3C validator |