MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnbl0 Structured version   Visualization version   GIF version

Theorem cnbl0 22577
Description: Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
cnblcld.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cnbl0 (𝑅 ∈ ℝ* → (abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅))

Proof of Theorem cnbl0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 abscl 14018 . . . . . . . . 9 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
2 absge0 14027 . . . . . . . . 9 (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥))
31, 2jca 554 . . . . . . . 8 (𝑥 ∈ ℂ → ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)))
43adantl 482 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)))
54biantrurd 529 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) < 𝑅 ↔ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) < 𝑅)))
6 df-3an 1039 . . . . . 6 (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅) ↔ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) < 𝑅))
75, 6syl6rbbr 279 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅) ↔ (abs‘𝑥) < 𝑅))
8 0re 10040 . . . . . 6 0 ∈ ℝ
9 simpl 473 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → 𝑅 ∈ ℝ*)
10 elico2 12237 . . . . . 6 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅)))
118, 9, 10sylancr 695 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅)))
12 0cn 10032 . . . . . . . . 9 0 ∈ ℂ
13 cnblcld.1 . . . . . . . . . . 11 𝐷 = (abs ∘ − )
1413cnmetdval 22574 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(0 − 𝑥)))
15 abssub 14066 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(0 − 𝑥)) = (abs‘(𝑥 − 0)))
1614, 15eqtrd 2656 . . . . . . . . 9 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
1712, 16mpan 706 . . . . . . . 8 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
18 subid1 10301 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥)
1918fveq2d 6195 . . . . . . . 8 (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥))
2017, 19eqtrd 2656 . . . . . . 7 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘𝑥))
2120adantl 482 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘𝑥))
2221breq1d 4663 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((0𝐷𝑥) < 𝑅 ↔ (abs‘𝑥) < 𝑅))
237, 11, 223bitr4d 300 . . . 4 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ (0𝐷𝑥) < 𝑅))
2423pm5.32da 673 . . 3 (𝑅 ∈ ℝ* → ((𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅)))
25 absf 14077 . . . . 5 abs:ℂ⟶ℝ
26 ffn 6045 . . . . 5 (abs:ℂ⟶ℝ → abs Fn ℂ)
2725, 26ax-mp 5 . . . 4 abs Fn ℂ
28 elpreima 6337 . . . 4 (abs Fn ℂ → (𝑥 ∈ (abs “ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅))))
2927, 28mp1i 13 . . 3 (𝑅 ∈ ℝ* → (𝑥 ∈ (abs “ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅))))
30 cnxmet 22576 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
3113, 30eqeltri 2697 . . . 4 𝐷 ∈ (∞Met‘ℂ)
32 elbl 22193 . . . 4 ((𝐷 ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (0(ball‘𝐷)𝑅) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅)))
3331, 12, 32mp3an12 1414 . . 3 (𝑅 ∈ ℝ* → (𝑥 ∈ (0(ball‘𝐷)𝑅) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅)))
3424, 29, 333bitr4d 300 . 2 (𝑅 ∈ ℝ* → (𝑥 ∈ (abs “ (0[,)𝑅)) ↔ 𝑥 ∈ (0(ball‘𝐷)𝑅)))
3534eqrdv 2620 1 (𝑅 ∈ ℝ* → (abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  ccnv 5113  cima 5117  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  *cxr 10073   < clt 10074  cle 10075  cmin 10266  [,)cico 12177  abscabs 13974  ∞Metcxmt 19731  ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741
This theorem is referenced by:  psercnlem2  24178  efopnlem1  24402  binomcxplemdvbinom  38552  binomcxplemnotnn0  38555
  Copyright terms: Public domain W3C validator