Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvxpconn Structured version   Visualization version   GIF version

Theorem cvxpconn 31224
Description: A convex subset of the complex numbers is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
cvxpconn.1 (𝜑𝑆 ⊆ ℂ)
cvxpconn.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
cvxpconn.3 𝐽 = (TopOpen‘ℂfld)
cvxpconn.4 𝐾 = (𝐽t 𝑆)
Assertion
Ref Expression
cvxpconn (𝜑𝐾 ∈ PConn)
Distinct variable groups:   𝑡,𝐽   𝑥,𝑡,𝑦,𝐾   𝜑,𝑡,𝑥,𝑦   𝑡,𝑆,𝑥,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)

Proof of Theorem cvxpconn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cvxpconn.4 . . 3 𝐾 = (𝐽t 𝑆)
2 cvxpconn.3 . . . . 5 𝐽 = (TopOpen‘ℂfld)
32cnfldtop 22587 . . . 4 𝐽 ∈ Top
4 cvxpconn.1 . . . . 5 (𝜑𝑆 ⊆ ℂ)
5 cnex 10017 . . . . 5 ℂ ∈ V
6 ssexg 4804 . . . . 5 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
74, 5, 6sylancl 694 . . . 4 (𝜑𝑆 ∈ V)
8 resttop 20964 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝐽t 𝑆) ∈ Top)
93, 7, 8sylancr 695 . . 3 (𝜑 → (𝐽t 𝑆) ∈ Top)
101, 9syl5eqel 2705 . 2 (𝜑𝐾 ∈ Top)
112dfii3 22686 . . . . . . . 8 II = (𝐽t (0[,]1))
122cnfldtopon 22586 . . . . . . . . 9 𝐽 ∈ (TopOn‘ℂ)
1312a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝐽 ∈ (TopOn‘ℂ))
14 unitssre 12319 . . . . . . . . . 10 (0[,]1) ⊆ ℝ
15 ax-resscn 9993 . . . . . . . . . 10 ℝ ⊆ ℂ
1614, 15sstri 3612 . . . . . . . . 9 (0[,]1) ⊆ ℂ
1716a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0[,]1) ⊆ ℂ)
1813cnmptid 21464 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (𝐽 Cn 𝐽))
194adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑆 ⊆ ℂ)
20 simprr 796 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑥𝑆)
2119, 20sseldd 3604 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑥 ∈ ℂ)
2213, 13, 21cnmptc 21465 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
232mulcn 22670 . . . . . . . . . . 11 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2423a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2513, 18, 22, 24cnmpt12f 21469 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ (𝑡 · 𝑥)) ∈ (𝐽 Cn 𝐽))
26 1cnd 10056 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 1 ∈ ℂ)
2713, 13, 26cnmptc 21465 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽))
282subcn 22669 . . . . . . . . . . . 12 − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2928a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3013, 27, 18, 29cnmpt12f 21469 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ (1 − 𝑡)) ∈ (𝐽 Cn 𝐽))
31 simprl 794 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑦𝑆)
3219, 31sseldd 3604 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑦 ∈ ℂ)
3313, 13, 32cnmptc 21465 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ 𝑦) ∈ (𝐽 Cn 𝐽))
3413, 30, 33, 24cnmpt12f 21469 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ ((1 − 𝑡) · 𝑦)) ∈ (𝐽 Cn 𝐽))
352addcn 22668 . . . . . . . . . 10 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
3635a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3713, 25, 34, 36cnmpt12f 21469 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (𝐽 Cn 𝐽))
3811, 13, 17, 37cnmpt1res 21479 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽))
39 cvxpconn.2 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
40393exp2 1285 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑆 → (𝑦𝑆 → (𝑡 ∈ (0[,]1) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆))))
4140com23 86 . . . . . . . . . . 11 (𝜑 → (𝑦𝑆 → (𝑥𝑆 → (𝑡 ∈ (0[,]1) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆))))
4241imp42 620 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑥𝑆)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
43 eqid 2622 . . . . . . . . . 10 (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
4442, 43fmptd 6385 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))):(0[,]1)⟶𝑆)
45 frn 6053 . . . . . . . . 9 ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))):(0[,]1)⟶𝑆 → ran (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ⊆ 𝑆)
4644, 45syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ran (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ⊆ 𝑆)
47 cnrest2 21090 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ⊆ 𝑆𝑆 ⊆ ℂ) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆))))
4813, 46, 19, 47syl3anc 1326 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆))))
4938, 48mpbid 222 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆)))
501oveq2i 6661 . . . . . 6 (II Cn 𝐾) = (II Cn (𝐽t 𝑆))
5149, 50syl6eleqr 2712 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐾))
52 0elunit 12290 . . . . . . 7 0 ∈ (0[,]1)
53 oveq1 6657 . . . . . . . . 9 (𝑡 = 0 → (𝑡 · 𝑥) = (0 · 𝑥))
54 oveq2 6658 . . . . . . . . . . 11 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
55 1m0e1 11131 . . . . . . . . . . 11 (1 − 0) = 1
5654, 55syl6eq 2672 . . . . . . . . . 10 (𝑡 = 0 → (1 − 𝑡) = 1)
5756oveq1d 6665 . . . . . . . . 9 (𝑡 = 0 → ((1 − 𝑡) · 𝑦) = (1 · 𝑦))
5853, 57oveq12d 6668 . . . . . . . 8 (𝑡 = 0 → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((0 · 𝑥) + (1 · 𝑦)))
59 ovex 6678 . . . . . . . 8 ((0 · 𝑥) + (1 · 𝑦)) ∈ V
6058, 43, 59fvmpt 6282 . . . . . . 7 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = ((0 · 𝑥) + (1 · 𝑦)))
6152, 60ax-mp 5 . . . . . 6 ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = ((0 · 𝑥) + (1 · 𝑦))
6221mul02d 10234 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 · 𝑥) = 0)
6332mulid2d 10058 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (1 · 𝑦) = 𝑦)
6462, 63oveq12d 6668 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((0 · 𝑥) + (1 · 𝑦)) = (0 + 𝑦))
6532addid2d 10237 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 + 𝑦) = 𝑦)
6664, 65eqtrd 2656 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((0 · 𝑥) + (1 · 𝑦)) = 𝑦)
6761, 66syl5eq 2668 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦)
68 1elunit 12291 . . . . . . 7 1 ∈ (0[,]1)
69 oveq1 6657 . . . . . . . . 9 (𝑡 = 1 → (𝑡 · 𝑥) = (1 · 𝑥))
70 oveq2 6658 . . . . . . . . . . 11 (𝑡 = 1 → (1 − 𝑡) = (1 − 1))
71 1m1e0 11089 . . . . . . . . . . 11 (1 − 1) = 0
7270, 71syl6eq 2672 . . . . . . . . . 10 (𝑡 = 1 → (1 − 𝑡) = 0)
7372oveq1d 6665 . . . . . . . . 9 (𝑡 = 1 → ((1 − 𝑡) · 𝑦) = (0 · 𝑦))
7469, 73oveq12d 6668 . . . . . . . 8 (𝑡 = 1 → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((1 · 𝑥) + (0 · 𝑦)))
75 ovex 6678 . . . . . . . 8 ((1 · 𝑥) + (0 · 𝑦)) ∈ V
7674, 43, 75fvmpt 6282 . . . . . . 7 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = ((1 · 𝑥) + (0 · 𝑦)))
7768, 76ax-mp 5 . . . . . 6 ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = ((1 · 𝑥) + (0 · 𝑦))
7821mulid2d 10058 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (1 · 𝑥) = 𝑥)
7932mul02d 10234 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 · 𝑦) = 0)
8078, 79oveq12d 6668 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((1 · 𝑥) + (0 · 𝑦)) = (𝑥 + 0))
8121addid1d 10236 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑥 + 0) = 𝑥)
8280, 81eqtrd 2656 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((1 · 𝑥) + (0 · 𝑦)) = 𝑥)
8377, 82syl5eq 2668 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)
84 fveq1 6190 . . . . . . . 8 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (𝑓‘0) = ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0))
8584eqeq1d 2624 . . . . . . 7 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → ((𝑓‘0) = 𝑦 ↔ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦))
86 fveq1 6190 . . . . . . . 8 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (𝑓‘1) = ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1))
8786eqeq1d 2624 . . . . . . 7 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → ((𝑓‘1) = 𝑥 ↔ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥))
8885, 87anbi12d 747 . . . . . 6 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦 ∧ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)))
8988rspcev 3309 . . . . 5 (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐾) ∧ (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦 ∧ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
9051, 67, 83, 89syl12anc 1324 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
9190ralrimivva 2971 . . 3 (𝜑 → ∀𝑦𝑆𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
92 resttopon 20965 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
9312, 4, 92sylancr 695 . . . . . 6 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
941, 93syl5eqel 2705 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑆))
95 toponuni 20719 . . . . 5 (𝐾 ∈ (TopOn‘𝑆) → 𝑆 = 𝐾)
9694, 95syl 17 . . . 4 (𝜑𝑆 = 𝐾)
9796raleqdv 3144 . . . 4 (𝜑 → (∀𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ ∀𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
9896, 97raleqbidv 3152 . . 3 (𝜑 → (∀𝑦𝑆𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
9991, 98mpbid 222 . 2 (𝜑 → ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
100 eqid 2622 . . 3 𝐾 = 𝐾
101100ispconn 31205 . 2 (𝐾 ∈ PConn ↔ (𝐾 ∈ Top ∧ ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
10210, 99, 101sylanbrc 698 1 (𝜑𝐾 ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574   cuni 4436  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  [,]cicc 12178  t crest 16081  TopOpenctopn 16082  fldccnfld 19746  Topctop 20698  TopOnctopon 20715   Cn ccn 21028   ×t ctx 21363  IIcii 22678  PConncpconn 31201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-pconn 31203
This theorem is referenced by:  cvxsconn  31225
  Copyright terms: Public domain W3C validator