| Step | Hyp | Ref
| Expression |
| 1 | | fconstmpt 5163 |
. . . . 5
⊢ ({𝐴} × {𝑥}) = (𝑘 ∈ {𝐴} ↦ 𝑥) |
| 2 | | pt1hmeo.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 3 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑉) |
| 4 | | sneq 4187 |
. . . . . . . . 9
⊢ (𝑘 = 𝐴 → {𝑘} = {𝐴}) |
| 5 | 4 | xpeq1d 5138 |
. . . . . . . 8
⊢ (𝑘 = 𝐴 → ({𝑘} × {𝑥}) = ({𝐴} × {𝑥})) |
| 6 | | opeq1 4402 |
. . . . . . . . 9
⊢ (𝑘 = 𝐴 → 〈𝑘, 𝑥〉 = 〈𝐴, 𝑥〉) |
| 7 | 6 | sneqd 4189 |
. . . . . . . 8
⊢ (𝑘 = 𝐴 → {〈𝑘, 𝑥〉} = {〈𝐴, 𝑥〉}) |
| 8 | 5, 7 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑘 = 𝐴 → (({𝑘} × {𝑥}) = {〈𝑘, 𝑥〉} ↔ ({𝐴} × {𝑥}) = {〈𝐴, 𝑥〉})) |
| 9 | | vex 3203 |
. . . . . . . 8
⊢ 𝑘 ∈ V |
| 10 | | vex 3203 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 11 | 9, 10 | xpsn 6407 |
. . . . . . 7
⊢ ({𝑘} × {𝑥}) = {〈𝑘, 𝑥〉} |
| 12 | 8, 11 | vtoclg 3266 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ({𝐴} × {𝑥}) = {〈𝐴, 𝑥〉}) |
| 13 | 3, 12 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ({𝐴} × {𝑥}) = {〈𝐴, 𝑥〉}) |
| 14 | 1, 13 | syl5eqr 2670 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑘 ∈ {𝐴} ↦ 𝑥) = {〈𝐴, 𝑥〉}) |
| 15 | 14 | mpteq2dva 4744 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ {𝐴} ↦ 𝑥)) = (𝑥 ∈ 𝑋 ↦ {〈𝐴, 𝑥〉})) |
| 16 | | pt1hmeo.j |
. . . 4
⊢ 𝐾 =
(∏t‘{〈𝐴, 𝐽〉}) |
| 17 | | pt1hmeo.r |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 18 | | snex 4908 |
. . . . 5
⊢ {𝐴} ∈ V |
| 19 | 18 | a1i 11 |
. . . 4
⊢ (𝜑 → {𝐴} ∈ V) |
| 20 | | topontop 20718 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 21 | 17, 20 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ Top) |
| 22 | 2, 21 | fsnd 6179 |
. . . 4
⊢ (𝜑 → {〈𝐴, 𝐽〉}:{𝐴}⟶Top) |
| 23 | 17 | cnmptid 21464 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| 24 | 23 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴}) → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| 25 | | elsni 4194 |
. . . . . . . 8
⊢ (𝑘 ∈ {𝐴} → 𝑘 = 𝐴) |
| 26 | 25 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑘 ∈ {𝐴} → ({〈𝐴, 𝐽〉}‘𝑘) = ({〈𝐴, 𝐽〉}‘𝐴)) |
| 27 | | fvsng 6447 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → ({〈𝐴, 𝐽〉}‘𝐴) = 𝐽) |
| 28 | 2, 17, 27 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ({〈𝐴, 𝐽〉}‘𝐴) = 𝐽) |
| 29 | 26, 28 | sylan9eqr 2678 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴}) → ({〈𝐴, 𝐽〉}‘𝑘) = 𝐽) |
| 30 | 29 | oveq2d 6666 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴}) → (𝐽 Cn ({〈𝐴, 𝐽〉}‘𝑘)) = (𝐽 Cn 𝐽)) |
| 31 | 24, 30 | eleqtrrd 2704 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴}) → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn ({〈𝐴, 𝐽〉}‘𝑘))) |
| 32 | 16, 17, 19, 22, 31 | ptcn 21430 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ {𝐴} ↦ 𝑥)) ∈ (𝐽 Cn 𝐾)) |
| 33 | 15, 32 | eqeltrrd 2702 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ {〈𝐴, 𝑥〉}) ∈ (𝐽 Cn 𝐾)) |
| 34 | | simprr 796 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) → 𝑦 = {〈𝐴, 𝑥〉}) |
| 35 | 14 | adantrr 753 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) → (𝑘 ∈ {𝐴} ↦ 𝑥) = {〈𝐴, 𝑥〉}) |
| 36 | 34, 35 | eqtr4d 2659 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) → 𝑦 = (𝑘 ∈ {𝐴} ↦ 𝑥)) |
| 37 | | simprl 794 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) → 𝑥 ∈ 𝑋) |
| 38 | 37 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) ∧ 𝑘 ∈ {𝐴}) → 𝑥 ∈ 𝑋) |
| 39 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑘 ∈ {𝐴} ↦ 𝑥) = (𝑘 ∈ {𝐴} ↦ 𝑥) |
| 40 | 38, 39 | fmptd 6385 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) → (𝑘 ∈ {𝐴} ↦ 𝑥):{𝐴}⟶𝑋) |
| 41 | | toponmax 20730 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
| 42 | 17, 41 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| 43 | 42 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) → 𝑋 ∈ 𝐽) |
| 44 | | elmapg 7870 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐽 ∧ {𝐴} ∈ V) → ((𝑘 ∈ {𝐴} ↦ 𝑥) ∈ (𝑋 ↑𝑚 {𝐴}) ↔ (𝑘 ∈ {𝐴} ↦ 𝑥):{𝐴}⟶𝑋)) |
| 45 | 43, 18, 44 | sylancl 694 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) → ((𝑘 ∈ {𝐴} ↦ 𝑥) ∈ (𝑋 ↑𝑚 {𝐴}) ↔ (𝑘 ∈ {𝐴} ↦ 𝑥):{𝐴}⟶𝑋)) |
| 46 | 40, 45 | mpbird 247 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) → (𝑘 ∈ {𝐴} ↦ 𝑥) ∈ (𝑋 ↑𝑚 {𝐴})) |
| 47 | 36, 46 | eqeltrd 2701 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) → 𝑦 ∈ (𝑋 ↑𝑚 {𝐴})) |
| 48 | 34 | fveq1d 6193 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) → (𝑦‘𝐴) = ({〈𝐴, 𝑥〉}‘𝐴)) |
| 49 | 2 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) → 𝐴 ∈ 𝑉) |
| 50 | | fvsng 6447 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋) → ({〈𝐴, 𝑥〉}‘𝐴) = 𝑥) |
| 51 | 49, 37, 50 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) → ({〈𝐴, 𝑥〉}‘𝐴) = 𝑥) |
| 52 | 48, 51 | eqtr2d 2657 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) → 𝑥 = (𝑦‘𝐴)) |
| 53 | 47, 52 | jca 554 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) → (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) |
| 54 | | simprr 796 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → 𝑥 = (𝑦‘𝐴)) |
| 55 | | simprl 794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → 𝑦 ∈ (𝑋 ↑𝑚 {𝐴})) |
| 56 | 42 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → 𝑋 ∈ 𝐽) |
| 57 | | elmapg 7870 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐽 ∧ {𝐴} ∈ V) → (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ↔ 𝑦:{𝐴}⟶𝑋)) |
| 58 | 56, 18, 57 | sylancl 694 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ↔ 𝑦:{𝐴}⟶𝑋)) |
| 59 | 55, 58 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → 𝑦:{𝐴}⟶𝑋) |
| 60 | | snidg 4206 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
| 61 | 2, 60 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
| 62 | 61 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → 𝐴 ∈ {𝐴}) |
| 63 | 59, 62 | ffvelrnd 6360 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → (𝑦‘𝐴) ∈ 𝑋) |
| 64 | 54, 63 | eqeltrd 2701 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → 𝑥 ∈ 𝑋) |
| 65 | 2 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → 𝐴 ∈ 𝑉) |
| 66 | | fsn2g 6405 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (𝑦:{𝐴}⟶𝑋 ↔ ((𝑦‘𝐴) ∈ 𝑋 ∧ 𝑦 = {〈𝐴, (𝑦‘𝐴)〉}))) |
| 67 | 65, 66 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → (𝑦:{𝐴}⟶𝑋 ↔ ((𝑦‘𝐴) ∈ 𝑋 ∧ 𝑦 = {〈𝐴, (𝑦‘𝐴)〉}))) |
| 68 | 59, 67 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → ((𝑦‘𝐴) ∈ 𝑋 ∧ 𝑦 = {〈𝐴, (𝑦‘𝐴)〉})) |
| 69 | 68 | simprd 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → 𝑦 = {〈𝐴, (𝑦‘𝐴)〉}) |
| 70 | 54 | opeq2d 4409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → 〈𝐴, 𝑥〉 = 〈𝐴, (𝑦‘𝐴)〉) |
| 71 | 70 | sneqd 4189 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → {〈𝐴, 𝑥〉} = {〈𝐴, (𝑦‘𝐴)〉}) |
| 72 | 69, 71 | eqtr4d 2659 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → 𝑦 = {〈𝐴, 𝑥〉}) |
| 73 | 64, 72 | jca 554 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴))) → (𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉})) |
| 74 | 53, 73 | impbida 877 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ 𝑦 = {〈𝐴, 𝑥〉}) ↔ (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ∧ 𝑥 = (𝑦‘𝐴)))) |
| 75 | 74 | mptcnv 5534 |
. . . 4
⊢ (𝜑 → ◡(𝑥 ∈ 𝑋 ↦ {〈𝐴, 𝑥〉}) = (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ↦ (𝑦‘𝐴))) |
| 76 | | xpsng 6406 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → ({𝐴} × {𝐽}) = {〈𝐴, 𝐽〉}) |
| 77 | 2, 17, 76 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → ({𝐴} × {𝐽}) = {〈𝐴, 𝐽〉}) |
| 78 | 77 | eqcomd 2628 |
. . . . . . . . 9
⊢ (𝜑 → {〈𝐴, 𝐽〉} = ({𝐴} × {𝐽})) |
| 79 | 78 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝜑 →
(∏t‘{〈𝐴, 𝐽〉}) = (∏t‘({𝐴} × {𝐽}))) |
| 80 | 16, 79 | syl5eq 2668 |
. . . . . . 7
⊢ (𝜑 → 𝐾 = (∏t‘({𝐴} × {𝐽}))) |
| 81 | | eqid 2622 |
. . . . . . . . 9
⊢
(∏t‘({𝐴} × {𝐽})) = (∏t‘({𝐴} × {𝐽})) |
| 82 | 81 | pttoponconst 21400 |
. . . . . . . 8
⊢ (({𝐴} ∈ V ∧ 𝐽 ∈ (TopOn‘𝑋)) →
(∏t‘({𝐴} × {𝐽})) ∈ (TopOn‘(𝑋 ↑𝑚 {𝐴}))) |
| 83 | 19, 17, 82 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 →
(∏t‘({𝐴} × {𝐽})) ∈ (TopOn‘(𝑋 ↑𝑚 {𝐴}))) |
| 84 | 80, 83 | eqeltrd 2701 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (TopOn‘(𝑋 ↑𝑚 {𝐴}))) |
| 85 | | toponuni 20719 |
. . . . . 6
⊢ (𝐾 ∈ (TopOn‘(𝑋 ↑𝑚
{𝐴})) → (𝑋 ↑𝑚
{𝐴}) = ∪ 𝐾) |
| 86 | 84, 85 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑋 ↑𝑚 {𝐴}) = ∪ 𝐾) |
| 87 | 86 | mpteq1d 4738 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ (𝑋 ↑𝑚 {𝐴}) ↦ (𝑦‘𝐴)) = (𝑦 ∈ ∪ 𝐾 ↦ (𝑦‘𝐴))) |
| 88 | 75, 87 | eqtrd 2656 |
. . 3
⊢ (𝜑 → ◡(𝑥 ∈ 𝑋 ↦ {〈𝐴, 𝑥〉}) = (𝑦 ∈ ∪ 𝐾 ↦ (𝑦‘𝐴))) |
| 89 | | eqid 2622 |
. . . . . 6
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 90 | 89, 16 | ptpjcn 21414 |
. . . . 5
⊢ (({𝐴} ∈ V ∧ {〈𝐴, 𝐽〉}:{𝐴}⟶Top ∧ 𝐴 ∈ {𝐴}) → (𝑦 ∈ ∪ 𝐾 ↦ (𝑦‘𝐴)) ∈ (𝐾 Cn ({〈𝐴, 𝐽〉}‘𝐴))) |
| 91 | 18, 22, 61, 90 | mp3an2i 1429 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ ∪ 𝐾 ↦ (𝑦‘𝐴)) ∈ (𝐾 Cn ({〈𝐴, 𝐽〉}‘𝐴))) |
| 92 | 28 | oveq2d 6666 |
. . . 4
⊢ (𝜑 → (𝐾 Cn ({〈𝐴, 𝐽〉}‘𝐴)) = (𝐾 Cn 𝐽)) |
| 93 | 91, 92 | eleqtrd 2703 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ∪ 𝐾 ↦ (𝑦‘𝐴)) ∈ (𝐾 Cn 𝐽)) |
| 94 | 88, 93 | eqeltrd 2701 |
. 2
⊢ (𝜑 → ◡(𝑥 ∈ 𝑋 ↦ {〈𝐴, 𝑥〉}) ∈ (𝐾 Cn 𝐽)) |
| 95 | | ishmeo 21562 |
. 2
⊢ ((𝑥 ∈ 𝑋 ↦ {〈𝐴, 𝑥〉}) ∈ (𝐽Homeo𝐾) ↔ ((𝑥 ∈ 𝑋 ↦ {〈𝐴, 𝑥〉}) ∈ (𝐽 Cn 𝐾) ∧ ◡(𝑥 ∈ 𝑋 ↦ {〈𝐴, 𝑥〉}) ∈ (𝐾 Cn 𝐽))) |
| 96 | 33, 94, 95 | sylanbrc 698 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ {〈𝐴, 𝑥〉}) ∈ (𝐽Homeo𝐾)) |