MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efrlim Structured version   Visualization version   GIF version

Theorem efrlim 24696
Description: The limit of the sequence (1 + 𝐴 / 𝑘)↑𝑘 is the exponential function. This is often taken as an alternate definition of the exponential function (see also dfef2 24697). (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
efrlim.1 𝑆 = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1)))
Assertion
Ref Expression
efrlim (𝐴 ∈ ℂ → (𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴))
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝑆(𝑘)

Proof of Theorem efrlim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 12280 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
2 ax-resscn 9993 . . . . . . . 8 ℝ ⊆ ℂ
31, 2sstri 3612 . . . . . . 7 (0[,)+∞) ⊆ ℂ
43sseli 3599 . . . . . 6 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
5 simpll 790 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 𝐴 ∈ ℂ)
6 1cnd 10056 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 1 ∈ ℂ)
7 simplr 792 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ ℂ)
8 ax-1ne0 10005 . . . . . . . . . . . 12 1 ≠ 0
98a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 1 ≠ 0)
10 simpr 477 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ¬ 𝑥 = 0)
1110neqned 2801 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 𝑥 ≠ 0)
125, 6, 7, 9, 11divdiv2d 10833 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (𝐴 / (1 / 𝑥)) = ((𝐴 · 𝑥) / 1))
13 mulcl 10020 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
1413adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (𝐴 · 𝑥) ∈ ℂ)
1514div1d 10793 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ((𝐴 · 𝑥) / 1) = (𝐴 · 𝑥))
1612, 15eqtrd 2656 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (𝐴 / (1 / 𝑥)) = (𝐴 · 𝑥))
1716oveq2d 6666 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 / (1 / 𝑥))) = (1 + (𝐴 · 𝑥)))
1817oveq1d 6665 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)) = ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))
1918ifeq2da 4117 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))
204, 19sylan2 491 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (0[,)+∞)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))
2120mpteq2dva 4744 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) = (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))))
22 resmpt 5449 . . . . 5 ((0[,)+∞) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))))
233, 22ax-mp 5 . . . 4 ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))
2421, 23syl6eqr 2674 . . 3 (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) = ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)))
253a1i 11 . . . 4 (𝐴 ∈ ℂ → (0[,)+∞) ⊆ ℂ)
26 0e0icopnf 12282 . . . . 5 0 ∈ (0[,)+∞)
2726a1i 11 . . . 4 (𝐴 ∈ ℂ → 0 ∈ (0[,)+∞))
28 eqeq2 2633 . . . . . . . . 9 ((exp‘(𝐴 · 1)) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) → (if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1)) ↔ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
29 eqeq2 2633 . . . . . . . . 9 ((exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) → (if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ↔ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
30 efrlim.1 . . . . . . . . . . . . . 14 𝑆 = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1)))
31 cnxmet 22576 . . . . . . . . . . . . . . . 16 (abs ∘ − ) ∈ (∞Met‘ℂ)
3231a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (abs ∘ − ) ∈ (∞Met‘ℂ))
33 0cnd 10033 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ∈ ℂ)
34 abscl 14018 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
35 peano2re 10209 . . . . . . . . . . . . . . . . . . 19 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
3634, 35syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((abs‘𝐴) + 1) ∈ ℝ)
37 0red 10041 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → 0 ∈ ℝ)
38 absge0 14027 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
3934ltp1d 10954 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (abs‘𝐴) < ((abs‘𝐴) + 1))
4037, 34, 36, 38, 39lelttrd 10195 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → 0 < ((abs‘𝐴) + 1))
4136, 40elrpd 11869 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((abs‘𝐴) + 1) ∈ ℝ+)
4241rpreccld 11882 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (1 / ((abs‘𝐴) + 1)) ∈ ℝ+)
4342rpxrd 11873 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (1 / ((abs‘𝐴) + 1)) ∈ ℝ*)
44 blssm 22223 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ⊆ ℂ)
4532, 33, 43, 44syl3anc 1326 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ⊆ ℂ)
4630, 45syl5eqss 3649 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → 𝑆 ⊆ ℂ)
4746sselda 3603 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 𝑥 ∈ ℂ)
48 mul0or 10667 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 · 𝑥) = 0 ↔ (𝐴 = 0 ∨ 𝑥 = 0)))
4947, 48syldan 487 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 · 𝑥) = 0 ↔ (𝐴 = 0 ∨ 𝑥 = 0)))
5049biimpa 501 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 · 𝑥) = 0) → (𝐴 = 0 ∨ 𝑥 = 0))
51 simpl 473 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 𝐴 ∈ ℂ)
5251, 47jca 554 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ))
537, 11reccld 10794 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (1 / 𝑥) ∈ ℂ)
5452, 53sylan 488 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ 𝑥 = 0) → (1 / 𝑥) ∈ ℂ)
5554adantlr 751 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 / 𝑥) ∈ ℂ)
56551cxpd 24453 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1↑𝑐(1 / 𝑥)) = 1)
57 simplr 792 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → 𝐴 = 0)
5857oveq1d 6665 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (𝐴 · 𝑥) = (0 · 𝑥))
5947ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ ℂ)
6059mul02d 10234 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (0 · 𝑥) = 0)
6158, 60eqtrd 2656 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (𝐴 · 𝑥) = 0)
6261oveq2d 6666 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 · 𝑥)) = (1 + 0))
63 1p0e1 11133 . . . . . . . . . . . . . . . . 17 (1 + 0) = 1
6462, 63syl6eq 2672 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 · 𝑥)) = 1)
6564oveq1d 6665 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) = (1↑𝑐(1 / 𝑥)))
6657fveq2d 6195 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (exp‘𝐴) = (exp‘0))
67 ef0 14821 . . . . . . . . . . . . . . . 16 (exp‘0) = 1
6866, 67syl6eq 2672 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (exp‘𝐴) = 1)
6956, 65, 683eqtr4d 2666 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) = (exp‘𝐴))
7069ifeq2da 4117 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), (exp‘𝐴)))
71 ifid 4125 . . . . . . . . . . . . 13 if(𝑥 = 0, (exp‘𝐴), (exp‘𝐴)) = (exp‘𝐴)
7270, 71syl6eq 2672 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
73 iftrue 4092 . . . . . . . . . . . . 13 (𝑥 = 0 → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
7473adantl 482 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝑥 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
7572, 74jaodan 826 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
76 mulid1 10037 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
7776ad2antrr 762 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → (𝐴 · 1) = 𝐴)
7877fveq2d 6195 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → (exp‘(𝐴 · 1)) = (exp‘𝐴))
7975, 78eqtr4d 2659 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1)))
8050, 79syldan 487 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 · 𝑥) = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1)))
81 mulne0b 10668 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ (𝐴 · 𝑥) ≠ 0))
8247, 81syldan 487 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ (𝐴 · 𝑥) ≠ 0))
83 df-ne 2795 . . . . . . . . . . . 12 ((𝐴 · 𝑥) ≠ 0 ↔ ¬ (𝐴 · 𝑥) = 0)
8482, 83syl6bb 276 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ ¬ (𝐴 · 𝑥) = 0))
85 simprr 796 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝑥 ≠ 0)
8685neneqd 2799 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ¬ 𝑥 = 0)
8786iffalsed 4097 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))
88 ax-1cn 9994 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
8947, 13syldan 487 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝐴 · 𝑥) ∈ ℂ)
90 addcl 10018 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝐴 · 𝑥) ∈ ℂ) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
9188, 89, 90sylancr 695 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
9291adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
93 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘ − ))1)
9493dvlog2lem 24398 . . . . . . . . . . . . . . . . . 18 (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ (-∞(,]0))
95 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
9695logdmss 24388 . . . . . . . . . . . . . . . . . 18 (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})
9794, 96sstri 3612 . . . . . . . . . . . . . . . . 17 (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ {0})
98 eqid 2622 . . . . . . . . . . . . . . . . . . . . . 22 (abs ∘ − ) = (abs ∘ − )
9998cnmetdval 22574 . . . . . . . . . . . . . . . . . . . . 21 (((1 + (𝐴 · 𝑥)) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) = (abs‘((1 + (𝐴 · 𝑥)) − 1)))
10091, 88, 99sylancl 694 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) = (abs‘((1 + (𝐴 · 𝑥)) − 1)))
101 pncan2 10288 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ (𝐴 · 𝑥) ∈ ℂ) → ((1 + (𝐴 · 𝑥)) − 1) = (𝐴 · 𝑥))
10288, 89, 101sylancr 695 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) − 1) = (𝐴 · 𝑥))
103102fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘((1 + (𝐴 · 𝑥)) − 1)) = (abs‘(𝐴 · 𝑥)))
104100, 103eqtrd 2656 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) = (abs‘(𝐴 · 𝑥)))
10589abscld 14175 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) ∈ ℝ)
10636adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((abs‘𝐴) + 1) ∈ ℝ)
10747abscld 14175 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝑥) ∈ ℝ)
108106, 107remulcld 10070 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (((abs‘𝐴) + 1) · (abs‘𝑥)) ∈ ℝ)
109 1red 10055 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 1 ∈ ℝ)
110 absmul 14034 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐴 · 𝑥)) = ((abs‘𝐴) · (abs‘𝑥)))
11147, 110syldan 487 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) = ((abs‘𝐴) · (abs‘𝑥)))
11234adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝐴) ∈ ℝ)
113112, 35syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((abs‘𝐴) + 1) ∈ ℝ)
11447absge0d 14183 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 0 ≤ (abs‘𝑥))
115112lep1d 10955 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝐴) ≤ ((abs‘𝐴) + 1))
116112, 113, 107, 114, 115lemul1ad 10963 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((abs‘𝐴) · (abs‘𝑥)) ≤ (((abs‘𝐴) + 1) · (abs‘𝑥)))
117111, 116eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) ≤ (((abs‘𝐴) + 1) · (abs‘𝑥)))
118 0cn 10032 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℂ
11998cnmetdval 22574 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
12047, 118, 119sylancl 694 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
12147subid1d 10381 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥 − 0) = 𝑥)
122121fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝑥 − 0)) = (abs‘𝑥))
123120, 122eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥(abs ∘ − )0) = (abs‘𝑥))
124 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 𝑥𝑆)
125124, 30syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 𝑥 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))))
12631a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs ∘ − ) ∈ (∞Met‘ℂ))
12743adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 / ((abs‘𝐴) + 1)) ∈ ℝ*)
128 0cnd 10033 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 0 ∈ ℂ)
129 elbl3 22197 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ↔ (𝑥(abs ∘ − )0) < (1 / ((abs‘𝐴) + 1))))
130126, 127, 128, 47, 129syl22anc 1327 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ↔ (𝑥(abs ∘ − )0) < (1 / ((abs‘𝐴) + 1))))
131125, 130mpbid 222 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥(abs ∘ − )0) < (1 / ((abs‘𝐴) + 1)))
132123, 131eqbrtrrd 4677 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝑥) < (1 / ((abs‘𝐴) + 1)))
13340adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 0 < ((abs‘𝐴) + 1))
134 ltmuldiv2 10897 . . . . . . . . . . . . . . . . . . . . . 22 (((abs‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((abs‘𝐴) + 1) ∈ ℝ ∧ 0 < ((abs‘𝐴) + 1))) → ((((abs‘𝐴) + 1) · (abs‘𝑥)) < 1 ↔ (abs‘𝑥) < (1 / ((abs‘𝐴) + 1))))
135107, 109, 113, 133, 134syl112anc 1330 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((((abs‘𝐴) + 1) · (abs‘𝑥)) < 1 ↔ (abs‘𝑥) < (1 / ((abs‘𝐴) + 1))))
136132, 135mpbird 247 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (((abs‘𝐴) + 1) · (abs‘𝑥)) < 1)
137105, 108, 109, 117, 136lelttrd 10195 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) < 1)
138104, 137eqbrtrd 4675 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) < 1)
139 1rp 11836 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ+
140 rpxr 11840 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ ℝ+ → 1 ∈ ℝ*)
141139, 140mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 1 ∈ ℝ*)
142 1cnd 10056 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 1 ∈ ℂ)
143 elbl3 22197 . . . . . . . . . . . . . . . . . . 19 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (1 ∈ ℂ ∧ (1 + (𝐴 · 𝑥)) ∈ ℂ)) → ((1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ − ))1) ↔ ((1 + (𝐴 · 𝑥))(abs ∘ − )1) < 1))
144126, 141, 142, 91, 143syl22anc 1327 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ − ))1) ↔ ((1 + (𝐴 · 𝑥))(abs ∘ − )1) < 1))
145138, 144mpbird 247 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ − ))1))
14697, 145sseldi 3601 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ∈ (ℂ ∖ {0}))
147 eldifsni 4320 . . . . . . . . . . . . . . . 16 ((1 + (𝐴 · 𝑥)) ∈ (ℂ ∖ {0}) → (1 + (𝐴 · 𝑥)) ≠ 0)
148146, 147syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ≠ 0)
149148adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 + (𝐴 · 𝑥)) ≠ 0)
15047adantr 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝑥 ∈ ℂ)
151150, 85reccld 10794 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ)
15292, 149, 151cxpefd 24458 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) = (exp‘((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥))))))
15391, 148logcld 24317 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ)
154153adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ)
155151, 154mulcomd 10061 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥)))) = ((log‘(1 + (𝐴 · 𝑥))) · (1 / 𝑥)))
156 simpll 790 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝐴 ∈ ℂ)
157 simprl 794 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝐴 ≠ 0)
158156, 157dividd 10799 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 / 𝐴) = 1)
159158oveq1d 6665 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((𝐴 / 𝐴) / 𝑥) = (1 / 𝑥))
160156, 156, 150, 157, 85divdiv1d 10832 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((𝐴 / 𝐴) / 𝑥) = (𝐴 / (𝐴 · 𝑥)))
161159, 160eqtr3d 2658 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) = (𝐴 / (𝐴 · 𝑥)))
162161oveq2d 6666 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((log‘(1 + (𝐴 · 𝑥))) · (1 / 𝑥)) = ((log‘(1 + (𝐴 · 𝑥))) · (𝐴 / (𝐴 · 𝑥))))
16389adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 · 𝑥) ∈ ℂ)
16482biimpa 501 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 · 𝑥) ≠ 0)
165154, 156, 163, 164div12d 10837 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((log‘(1 + (𝐴 · 𝑥))) · (𝐴 / (𝐴 · 𝑥))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
166155, 162, 1653eqtrd 2660 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥)))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
167166fveq2d 6195 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (exp‘((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥))))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
16887, 152, 1673eqtrd 2660 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
169168ex 450 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
17084, 169sylbird 250 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (¬ (𝐴 · 𝑥) = 0 → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
171170imp 445 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
17228, 29, 80, 171ifbothda 4123 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
173172mpteq2dva 4744 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
17446resmptd 5452 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) = (𝑥𝑆 ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))))
175 1cnd 10056 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 · 𝑥) = 0) → 1 ∈ ℂ)
176153adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ)
17789adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (𝐴 · 𝑥) ∈ ℂ)
178 simpr 477 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → ¬ (𝐴 · 𝑥) = 0)
179178neqned 2801 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (𝐴 · 𝑥) ≠ 0)
180176, 177, 179divcld 10801 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) ∈ ℂ)
181175, 180ifclda 4120 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) ∈ ℂ)
182 eqidd 2623 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
183 eqidd 2623 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))))
184 oveq2 6658 . . . . . . . . . 10 (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (𝐴 · 𝑦) = (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
185184fveq2d 6195 . . . . . . . . 9 (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
186 oveq2 6658 . . . . . . . . . . 11 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = 1 → (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝐴 · 1))
187186fveq2d 6195 . . . . . . . . . 10 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = 1 → (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (exp‘(𝐴 · 1)))
188 oveq2 6658 . . . . . . . . . . 11 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) → (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
189188fveq2d 6195 . . . . . . . . . 10 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) → (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
190187, 189ifsb 4099 . . . . . . . . 9 (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
191185, 190syl6eq 2672 . . . . . . . 8 (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (exp‘(𝐴 · 𝑦)) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
192181, 182, 183, 191fmptco 6396 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
193173, 174, 1923eqtr4d 2666 . . . . . 6 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) = ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
194 eqidd 2623 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) = (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))))
195 eqidd 2623 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))))
196 eqeq1 2626 . . . . . . . . . . 11 (𝑦 = (1 + (𝐴 · 𝑥)) → (𝑦 = 1 ↔ (1 + (𝐴 · 𝑥)) = 1))
197 fveq2 6191 . . . . . . . . . . . 12 (𝑦 = (1 + (𝐴 · 𝑥)) → (log‘𝑦) = (log‘(1 + (𝐴 · 𝑥))))
198 oveq1 6657 . . . . . . . . . . . 12 (𝑦 = (1 + (𝐴 · 𝑥)) → (𝑦 − 1) = ((1 + (𝐴 · 𝑥)) − 1))
199197, 198oveq12d 6668 . . . . . . . . . . 11 (𝑦 = (1 + (𝐴 · 𝑥)) → ((log‘𝑦) / (𝑦 − 1)) = ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)))
200196, 199ifbieq2d 4111 . . . . . . . . . 10 (𝑦 = (1 + (𝐴 · 𝑥)) → if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1))) = if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1))))
201145, 194, 195, 200fmptco 6396 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) = (𝑥𝑆 ↦ if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)))))
20263eqeq2i 2634 . . . . . . . . . . . 12 ((1 + (𝐴 · 𝑥)) = (1 + 0) ↔ (1 + (𝐴 · 𝑥)) = 1)
203142, 89, 128addcand 10239 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) = (1 + 0) ↔ (𝐴 · 𝑥) = 0))
204202, 203syl5bbr 274 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) = 1 ↔ (𝐴 · 𝑥) = 0))
205102oveq2d 6666 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))
206204, 205ifbieq2d 4111 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1))) = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
207206mpteq2dva 4744 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
208201, 207eqtrd 2656 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
209 eqid 2622 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
210 eqid 2622 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
211210cnfldtopon 22586 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
212211a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
213 1cnd 10056 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → 1 ∈ ℂ)
214212, 212, 213cnmptc 21465 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 1) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
215 id 22 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
216212, 212, 215cnmptc 21465 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 𝐴) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
217212cnmptid 21464 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
218210mulcn 22670 . . . . . . . . . . . . . . 15 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
219218a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
220212, 216, 217, 219cnmpt12f 21469 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
221210addcn 22668 . . . . . . . . . . . . . 14 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
222221a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
223212, 214, 220, 222cnmpt12f 21469 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (1 + (𝐴 · 𝑥))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
224209, 212, 46, 223cnmpt1res 21479 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
225 eqid 2622 . . . . . . . . . . . . . 14 (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) = (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))
226145, 225fmptd 6385 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))):𝑆⟶(1(ball‘(abs ∘ − ))1))
227 frn 6053 . . . . . . . . . . . . 13 ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))):𝑆⟶(1(ball‘(abs ∘ − ))1) → ran (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ⊆ (1(ball‘(abs ∘ − ))1))
228226, 227syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ran (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ⊆ (1(ball‘(abs ∘ − ))1))
229 difss 3737 . . . . . . . . . . . . . 14 (ℂ ∖ {0}) ⊆ ℂ
23097, 229sstri 3612 . . . . . . . . . . . . 13 (1(ball‘(abs ∘ − ))1) ⊆ ℂ
231230a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1(ball‘(abs ∘ − ))1) ⊆ ℂ)
232 cnrest2 21090 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ⊆ (1(ball‘(abs ∘ − ))1) ∧ (1(ball‘(abs ∘ − ))1) ⊆ ℂ) → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))))
233212, 228, 231, 232syl3anc 1326 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))))
234224, 233mpbid 222 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1))))
235 blcntr 22218 . . . . . . . . . . . . 13 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ+) → 0 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))))
23632, 33, 42, 235syl3anc 1326 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 0 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))))
237236, 30syl6eleqr 2712 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 0 ∈ 𝑆)
238 resttopon 20965 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
239211, 46, 238sylancr 695 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
240 toponuni 20719 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
241239, 240syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
242237, 241eleqtrd 2703 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
243 eqid 2622 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
244243cncnpi 21082 . . . . . . . . . 10 (((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1))) ∧ 0 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))‘0))
245234, 242, 244syl2anc 693 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))‘0))
246 cnelprrecn 10029 . . . . . . . . . . 11 ℂ ∈ {ℝ, ℂ}
247 logf1o 24311 . . . . . . . . . . . . . 14 log:(ℂ ∖ {0})–1-1-onto→ran log
248 f1of 6137 . . . . . . . . . . . . . 14 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
249247, 248ax-mp 5 . . . . . . . . . . . . 13 log:(ℂ ∖ {0})⟶ran log
250 logrncn 24309 . . . . . . . . . . . . . 14 (𝑥 ∈ ran log → 𝑥 ∈ ℂ)
251250ssriv 3607 . . . . . . . . . . . . 13 ran log ⊆ ℂ
252 fss 6056 . . . . . . . . . . . . 13 ((log:(ℂ ∖ {0})⟶ran log ∧ ran log ⊆ ℂ) → log:(ℂ ∖ {0})⟶ℂ)
253249, 251, 252mp2an 708 . . . . . . . . . . . 12 log:(ℂ ∖ {0})⟶ℂ
254 fssres 6070 . . . . . . . . . . . 12 ((log:(ℂ ∖ {0})⟶ℂ ∧ (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ {0})) → (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ)
255253, 97, 254mp2an 708 . . . . . . . . . . 11 (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ
256 blcntr 22218 . . . . . . . . . . . . . 14 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ+) → 1 ∈ (1(ball‘(abs ∘ − ))1))
25731, 88, 139, 256mp3an 1424 . . . . . . . . . . . . 13 1 ∈ (1(ball‘(abs ∘ − ))1)
258 ovex 6678 . . . . . . . . . . . . . 14 (1 / 𝑦) ∈ V
25993dvlog2 24399 . . . . . . . . . . . . . 14 (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))
260258, 259dmmpti 6023 . . . . . . . . . . . . 13 dom (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) = (1(ball‘(abs ∘ − ))1)
261257, 260eleqtrri 2700 . . . . . . . . . . . 12 1 ∈ dom (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))
262 eqid 2622 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) = ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1))
263259fveq1i 6192 . . . . . . . . . . . . . . . . 17 ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1) = ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))‘1)
264 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 1 → (1 / 𝑦) = (1 / 1))
265 1div1e1 10717 . . . . . . . . . . . . . . . . . . . 20 (1 / 1) = 1
266264, 265syl6eq 2672 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 1 → (1 / 𝑦) = 1)
267 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦)) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))
268 1ex 10035 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
269266, 267, 268fvmpt 6282 . . . . . . . . . . . . . . . . . 18 (1 ∈ (1(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))‘1) = 1)
270257, 269ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))‘1) = 1
271263, 270eqtr2i 2645 . . . . . . . . . . . . . . . 16 1 = ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1)
272271a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → 1 = ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1))
273 fvres 6207 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) = (log‘𝑦))
274 fvres 6207 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘1) = (log‘1))
275257, 274mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘1) = (log‘1))
276 log1 24332 . . . . . . . . . . . . . . . . . . 19 (log‘1) = 0
277275, 276syl6eq 2672 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘1) = 0)
278273, 277oveq12d 6668 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) = ((log‘𝑦) − 0))
27997sseli 3599 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → 𝑦 ∈ (ℂ ∖ {0}))
280 eldifsn 4317 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
281279, 280sylib 208 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
282 logcl 24315 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (log‘𝑦) ∈ ℂ)
283281, 282syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (log‘𝑦) ∈ ℂ)
284283subid1d 10381 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log‘𝑦) − 0) = (log‘𝑦))
285278, 284eqtr2d 2657 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (log‘𝑦) = (((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)))
286285oveq1d 6665 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log‘𝑦) / (𝑦 − 1)) = ((((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) / (𝑦 − 1)))
287272, 286ifeq12d 4106 . . . . . . . . . . . . . 14 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1))) = if(𝑦 = 1, ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1), ((((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) / (𝑦 − 1))))
288287mpteq2ia 4740 . . . . . . . . . . . . 13 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1), ((((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) / (𝑦 − 1))))
289262, 210, 288dvcnp 23682 . . . . . . . . . . . 12 (((ℂ ∈ {ℝ, ℂ} ∧ (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ ∧ (1(ball‘(abs ∘ − ))1) ⊆ ℂ) ∧ 1 ∈ dom (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))) → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1))
290261, 289mpan2 707 . . . . . . . . . . 11 ((ℂ ∈ {ℝ, ℂ} ∧ (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ ∧ (1(ball‘(abs ∘ − ))1) ⊆ ℂ) → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1))
291246, 255, 230, 290mp3an 1424 . . . . . . . . . 10 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1)
292 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝐴 · 𝑥) = (𝐴 · 0))
293292oveq2d 6666 . . . . . . . . . . . . . 14 (𝑥 = 0 → (1 + (𝐴 · 𝑥)) = (1 + (𝐴 · 0)))
294 ovex 6678 . . . . . . . . . . . . . 14 (1 + (𝐴 · 0)) ∈ V
295293, 225, 294fvmpt 6282 . . . . . . . . . . . . 13 (0 ∈ 𝑆 → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = (1 + (𝐴 · 0)))
296237, 295syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = (1 + (𝐴 · 0)))
297 mul01 10215 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
298297oveq2d 6666 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = (1 + 0))
299298, 63syl6eq 2672 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = 1)
300296, 299eqtrd 2656 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = 1)
301300fveq2d 6195 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0)) = ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1))
302291, 301syl5eleqr 2708 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0)))
303 cnpco 21071 . . . . . . . . 9 (((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))‘0) ∧ (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0))) → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
304245, 302, 303syl2anc 693 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
305208, 304eqeltrrd 2702 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
306212, 212, 215cnmptc 21465 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝐴) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
307212cnmptid 21464 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝑦) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
308212, 306, 307, 219cnmpt12f 21469 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
309 efcn 24197 . . . . . . . . . . 11 exp ∈ (ℂ–cn→ℂ)
310210cncfcn1 22713 . . . . . . . . . . 11 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
311309, 310eleqtri 2699 . . . . . . . . . 10 exp ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
312311a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → exp ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
313212, 308, 312cnmpt11f 21467 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
314 eqid 2622 . . . . . . . . . 10 (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
315181, 314fmptd 6385 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))):𝑆⟶ℂ)
316315, 237ffvelrnd 6360 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0) ∈ ℂ)
317211toponunii 20721 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
318317cncnpi 21082 . . . . . . . 8 (((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0) ∈ ℂ) → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0)))
319313, 316, 318syl2anc 693 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0)))
320 cnpco 21071 . . . . . . 7 (((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0) ∧ (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0))) → ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
321305, 319, 320syl2anc 693 . . . . . 6 (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
322193, 321eqeltrd 2701 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
323210cnfldtop 22587 . . . . . . 7 (TopOpen‘ℂfld) ∈ Top
324323a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (TopOpen‘ℂfld) ∈ Top)
325210cnfldtopn 22585 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
326325blopn 22305 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ∈ (TopOpen‘ℂfld))
32732, 33, 43, 326syl3anc 1326 . . . . . . . . 9 (𝐴 ∈ ℂ → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ∈ (TopOpen‘ℂfld))
32830, 327syl5eqel 2705 . . . . . . . 8 (𝐴 ∈ ℂ → 𝑆 ∈ (TopOpen‘ℂfld))
329 isopn3i 20886 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆)
330323, 328, 329sylancr 695 . . . . . . 7 (𝐴 ∈ ℂ → ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆)
331237, 330eleqtrrd 2704 . . . . . 6 (𝐴 ∈ ℂ → 0 ∈ ((int‘(TopOpen‘ℂfld))‘𝑆))
332 efcl 14813 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
333332ad2antrr 762 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ 𝑥 = 0) → (exp‘𝐴) ∈ ℂ)
33488, 14, 90sylancr 695 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
335334, 53cxpcld 24454 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) ∈ ℂ)
336333, 335ifclda 4120 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) ∈ ℂ)
337 eqid 2622 . . . . . . 7 (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) = (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))
338336, 337fmptd 6385 . . . . . 6 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))):ℂ⟶ℂ)
339317, 317cnprest 21093 . . . . . 6 ((((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ) ∧ (0 ∈ ((int‘(TopOpen‘ℂfld))‘𝑆) ∧ (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))):ℂ⟶ℂ)) → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0) ↔ ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0)))
340324, 46, 331, 338, 339syl22anc 1327 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0) ↔ ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0)))
341322, 340mpbird 247 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0))
342317cnpresti 21092 . . . 4 (((0[,)+∞) ⊆ ℂ ∧ 0 ∈ (0[,)+∞) ∧ (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0)) → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0))
34325, 27, 341, 342syl3anc 1326 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0))
34424, 343eqeltrd 2701 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0))
345 simpl 473 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → 𝐴 ∈ ℂ)
346 rpcn 11841 . . . . . . 7 (𝑘 ∈ ℝ+𝑘 ∈ ℂ)
347346adantl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → 𝑘 ∈ ℂ)
348 rpne0 11848 . . . . . . 7 (𝑘 ∈ ℝ+𝑘 ≠ 0)
349348adantl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → 𝑘 ≠ 0)
350345, 347, 349divcld 10801 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → (𝐴 / 𝑘) ∈ ℂ)
351 addcl 10018 . . . . 5 ((1 ∈ ℂ ∧ (𝐴 / 𝑘) ∈ ℂ) → (1 + (𝐴 / 𝑘)) ∈ ℂ)
35288, 350, 351sylancr 695 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → (1 + (𝐴 / 𝑘)) ∈ ℂ)
353352, 347cxpcld 24454 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → ((1 + (𝐴 / 𝑘))↑𝑐𝑘) ∈ ℂ)
354 oveq2 6658 . . . . 5 (𝑘 = (1 / 𝑥) → (𝐴 / 𝑘) = (𝐴 / (1 / 𝑥)))
355354oveq2d 6666 . . . 4 (𝑘 = (1 / 𝑥) → (1 + (𝐴 / 𝑘)) = (1 + (𝐴 / (1 / 𝑥))))
356 id 22 . . . 4 (𝑘 = (1 / 𝑥) → 𝑘 = (1 / 𝑥))
357355, 356oveq12d 6668 . . 3 (𝑘 = (1 / 𝑥) → ((1 + (𝐴 / 𝑘))↑𝑐𝑘) = ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))
358 eqid 2622 . . 3 ((TopOpen‘ℂfld) ↾t (0[,)+∞)) = ((TopOpen‘ℂfld) ↾t (0[,)+∞))
359332, 353, 357, 210, 358rlimcnp3 24694 . 2 (𝐴 ∈ ℂ → ((𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴) ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0)))
360344, 359mpbird 247 1 (𝐴 ∈ ℂ → (𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cdif 3571  wss 3574  ifcif 4086  {csn 4177  {cpr 4179   cuni 4436   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  cres 5116  ccom 5118  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  +crp 11832  (,]cioc 12176  [,)cico 12177  abscabs 13974  𝑟 crli 14216  expce 14792  t crest 16081  TopOpenctopn 16082  ∞Metcxmt 19731  ballcbl 19733  fldccnfld 19746  Topctop 20698  TopOnctopon 20715  intcnt 20821   Cn ccn 21028   CnP ccnp 21029   ×t ctx 21363  cnccncf 22679   D cdv 23627  logclog 24301  𝑐ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  dfef2  24697
  Copyright terms: Public domain W3C validator