| Step | Hyp | Ref
| Expression |
| 1 | | pcopt.1 |
. . . . . . . . 9
⊢ 𝑃 = ((0[,]1) × {𝑌}) |
| 2 | 1 | fveq1i 6192 |
. . . . . . . 8
⊢ (𝑃‘((2 · 𝑥) − 1)) = (((0[,]1)
× {𝑌})‘((2
· 𝑥) −
1)) |
| 3 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹‘1) = 𝑌) |
| 4 | | iiuni 22684 |
. . . . . . . . . . . . 13
⊢ (0[,]1) =
∪ II |
| 5 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 6 | 4, 5 | cnf 21050 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶∪
𝐽) |
| 7 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹:(0[,]1)⟶∪
𝐽) |
| 8 | | 1elunit 12291 |
. . . . . . . . . . 11
⊢ 1 ∈
(0[,]1) |
| 9 | | ffvelrn 6357 |
. . . . . . . . . . 11
⊢ ((𝐹:(0[,]1)⟶∪ 𝐽
∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ ∪ 𝐽) |
| 10 | 7, 8, 9 | sylancl 694 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹‘1) ∈ ∪ 𝐽) |
| 11 | 3, 10 | eqeltrrd 2702 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝑌 ∈ ∪ 𝐽) |
| 12 | | elii2 22735 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 ≤ (1 / 2)) →
𝑥 ∈ ((1 /
2)[,]1)) |
| 13 | | iihalf2 22732 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((1 / 2)[,]1) → ((2
· 𝑥) − 1)
∈ (0[,]1)) |
| 14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 ≤ (1 / 2)) → ((2
· 𝑥) − 1)
∈ (0[,]1)) |
| 15 | | fvconst2g 6467 |
. . . . . . . . 9
⊢ ((𝑌 ∈ ∪ 𝐽
∧ ((2 · 𝑥)
− 1) ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘((2 · 𝑥) − 1)) = 𝑌) |
| 16 | 11, 14, 15 | syl2an 494 |
. . . . . . . 8
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (((0[,]1)
× {𝑌})‘((2
· 𝑥) − 1)) =
𝑌) |
| 17 | 2, 16 | syl5eq 2668 |
. . . . . . 7
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝑃‘((2 · 𝑥) − 1)) = 𝑌) |
| 18 | | simplr 792 |
. . . . . . 7
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝐹‘1) = 𝑌) |
| 19 | 17, 18 | eqtr4d 2659 |
. . . . . 6
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝑃‘((2 · 𝑥) − 1)) = (𝐹‘1)) |
| 20 | 19 | anassrs 680 |
. . . . 5
⊢ ((((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → (𝑃‘((2 · 𝑥) − 1)) = (𝐹‘1)) |
| 21 | 20 | ifeq2da 4117 |
. . . 4
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1))) |
| 22 | 21 | mpteq2dva 4744 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1)))) |
| 23 | | simpl 473 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹 ∈ (II Cn 𝐽)) |
| 24 | | cntop2 21045 |
. . . . . . . 8
⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top) |
| 25 | 24 | adantr 481 |
. . . . . . 7
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐽 ∈ Top) |
| 26 | 5 | toptopon 20722 |
. . . . . . 7
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 27 | 25, 26 | sylib 208 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 28 | 1 | pcoptcl 22821 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝑌 ∈ ∪ 𝐽)
→ (𝑃 ∈ (II Cn
𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
| 29 | 27, 11, 28 | syl2anc 693 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
| 30 | 29 | simp1d 1073 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝑃 ∈ (II Cn 𝐽)) |
| 31 | 23, 30 | pcoval 22811 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝‘𝐽)𝑃) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1))))) |
| 32 | | iftrue 4092 |
. . . . . . . . 9
⊢ (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥)) |
| 33 | 32 | adantl 482 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥)) |
| 34 | | elii1 22734 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0[,](1 / 2)) ↔
(𝑥 ∈ (0[,]1) ∧
𝑥 ≤ (1 /
2))) |
| 35 | | iihalf1 22730 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0[,](1 / 2)) → (2
· 𝑥) ∈
(0[,]1)) |
| 36 | 34, 35 | sylbir 225 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → (2
· 𝑥) ∈
(0[,]1)) |
| 37 | 33, 36 | eqeltrd 2701 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈
(0[,]1)) |
| 38 | 37 | ex 450 |
. . . . . 6
⊢ (𝑥 ∈ (0[,]1) → (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈
(0[,]1))) |
| 39 | | iffalse 4095 |
. . . . . . 7
⊢ (¬
𝑥 ≤ (1 / 2) →
if(𝑥 ≤ (1 / 2), (2
· 𝑥), 1) =
1) |
| 40 | 39, 8 | syl6eqel 2709 |
. . . . . 6
⊢ (¬
𝑥 ≤ (1 / 2) →
if(𝑥 ≤ (1 / 2), (2
· 𝑥), 1) ∈
(0[,]1)) |
| 41 | 38, 40 | pm2.61d1 171 |
. . . . 5
⊢ (𝑥 ∈ (0[,]1) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈
(0[,]1)) |
| 42 | 41 | adantl 482 |
. . . 4
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1)) |
| 43 | | eqidd 2623 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))) |
| 44 | 7 | feqmptd 6249 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑦))) |
| 45 | | fveq2 6191 |
. . . . 5
⊢ (𝑦 = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) → (𝐹‘𝑦) = (𝐹‘if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))) |
| 46 | | fvif 6204 |
. . . . 5
⊢ (𝐹‘if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1)) |
| 47 | 45, 46 | syl6eq 2672 |
. . . 4
⊢ (𝑦 = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) → (𝐹‘𝑦) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1))) |
| 48 | 42, 43, 44, 47 | fmptco 6396 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1)))) |
| 49 | 22, 31, 48 | 3eqtr4d 2666 |
. 2
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝‘𝐽)𝑃) = (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)))) |
| 50 | | iitopon 22682 |
. . . . 5
⊢ II ∈
(TopOn‘(0[,]1)) |
| 51 | 50 | a1i 11 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → II ∈
(TopOn‘(0[,]1))) |
| 52 | 51 | cnmptid 21464 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II)) |
| 53 | | 0elunit 12290 |
. . . . . 6
⊢ 0 ∈
(0[,]1) |
| 54 | 53 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 0 ∈ (0[,]1)) |
| 55 | 51, 51, 54 | cnmptc 21465 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn
II)) |
| 56 | | eqid 2622 |
. . . . 5
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
| 57 | | eqid 2622 |
. . . . 5
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 2))) =
((topGen‘ran (,)) ↾t (0[,](1 / 2))) |
| 58 | | eqid 2622 |
. . . . 5
⊢
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) =
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) |
| 59 | | dfii2 22685 |
. . . . 5
⊢ II =
((topGen‘ran (,)) ↾t (0[,]1)) |
| 60 | | 0re 10040 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 61 | 60 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 0 ∈ ℝ) |
| 62 | | 1re 10039 |
. . . . . 6
⊢ 1 ∈
ℝ |
| 63 | 62 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 1 ∈ ℝ) |
| 64 | | halfre 11246 |
. . . . . . 7
⊢ (1 / 2)
∈ ℝ |
| 65 | | halfgt0 11248 |
. . . . . . . 8
⊢ 0 < (1
/ 2) |
| 66 | 60, 64, 65 | ltleii 10160 |
. . . . . . 7
⊢ 0 ≤ (1
/ 2) |
| 67 | | halflt1 11250 |
. . . . . . . 8
⊢ (1 / 2)
< 1 |
| 68 | 64, 62, 67 | ltleii 10160 |
. . . . . . 7
⊢ (1 / 2)
≤ 1 |
| 69 | 60, 62 | elicc2i 12239 |
. . . . . . 7
⊢ ((1 / 2)
∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 /
2) ≤ 1)) |
| 70 | 64, 66, 68, 69 | mpbir3an 1244 |
. . . . . 6
⊢ (1 / 2)
∈ (0[,]1) |
| 71 | 70 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (1 / 2) ∈
(0[,]1)) |
| 72 | | simprl 794 |
. . . . . . 7
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2)) |
| 73 | 72 | oveq2d 6666 |
. . . . . 6
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 /
2))) |
| 74 | | 2cn 11091 |
. . . . . . 7
⊢ 2 ∈
ℂ |
| 75 | | 2ne0 11113 |
. . . . . . 7
⊢ 2 ≠
0 |
| 76 | 74, 75 | recidi 10756 |
. . . . . 6
⊢ (2
· (1 / 2)) = 1 |
| 77 | 73, 76 | syl6eq 2672 |
. . . . 5
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1) |
| 78 | | retopon 22567 |
. . . . . . . 8
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| 79 | | iccssre 12255 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆
ℝ) |
| 80 | 60, 64, 79 | mp2an 708 |
. . . . . . . 8
⊢ (0[,](1 /
2)) ⊆ ℝ |
| 81 | | resttopon 20965 |
. . . . . . . 8
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 /
2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1
/ 2))) ∈ (TopOn‘(0[,](1 / 2)))) |
| 82 | 78, 80, 81 | mp2an 708 |
. . . . . . 7
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈
(TopOn‘(0[,](1 / 2))) |
| 83 | 82 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((topGen‘ran (,))
↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 /
2)))) |
| 84 | 83, 51 | cnmpt1st 21471 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,))
↾t (0[,](1 / 2))) ×t II) Cn
((topGen‘ran (,)) ↾t (0[,](1 / 2))))) |
| 85 | 57 | iihalf1cn 22731 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,](1 / 2)) ↦ (2
· 𝑥)) ∈
(((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn
II) |
| 86 | 85 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 ·
𝑥)) ∈
(((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn
II)) |
| 87 | | oveq2 6658 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦)) |
| 88 | 83, 51, 84, 83, 86, 87 | cnmpt21 21474 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (2 · 𝑦)) ∈ ((((topGen‘ran
(,)) ↾t (0[,](1 / 2))) ×t II) Cn
II)) |
| 89 | | iccssre 12255 |
. . . . . . . . 9
⊢ (((1 / 2)
∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆
ℝ) |
| 90 | 64, 62, 89 | mp2an 708 |
. . . . . . . 8
⊢ ((1 /
2)[,]1) ⊆ ℝ |
| 91 | | resttopon 20965 |
. . . . . . . 8
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 /
2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1
/ 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))) |
| 92 | 78, 90, 91 | mp2an 708 |
. . . . . . 7
⊢
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈
(TopOn‘((1 / 2)[,]1)) |
| 93 | 92 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 /
2)[,]1))) |
| 94 | 8 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 1 ∈ (0[,]1)) |
| 95 | 93, 51, 51, 94 | cnmpt2c 21473 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 1) ∈
((((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
×t II) Cn II)) |
| 96 | 56, 57, 58, 59, 61, 63, 71, 51, 77, 88, 95 | cnmpt2pc 22727 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1)) ∈ ((II ×t II) Cn
II)) |
| 97 | | breq1 4656 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2))) |
| 98 | | oveq2 6658 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥)) |
| 99 | 97, 98 | ifbieq1d 4109 |
. . . . 5
⊢ (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1) = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) |
| 100 | 99 | adantr 481 |
. . . 4
⊢ ((𝑦 = 𝑥 ∧ 𝑧 = 0) → if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1) = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) |
| 101 | 51, 52, 55, 51, 51, 96, 100 | cnmpt12 21470 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) ∈ (II Cn II)) |
| 102 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = 0 → 𝑥 = 0) |
| 103 | 102, 66 | syl6eqbr 4692 |
. . . . . . 7
⊢ (𝑥 = 0 → 𝑥 ≤ (1 / 2)) |
| 104 | 103, 32 | syl 17 |
. . . . . 6
⊢ (𝑥 = 0 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥)) |
| 105 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑥 = 0 → (2 · 𝑥) = (2 ·
0)) |
| 106 | | 2t0e0 11183 |
. . . . . . 7
⊢ (2
· 0) = 0 |
| 107 | 105, 106 | syl6eq 2672 |
. . . . . 6
⊢ (𝑥 = 0 → (2 · 𝑥) = 0) |
| 108 | 104, 107 | eqtrd 2656 |
. . . . 5
⊢ (𝑥 = 0 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = 0) |
| 109 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) |
| 110 | | c0ex 10034 |
. . . . 5
⊢ 0 ∈
V |
| 111 | 108, 109,
110 | fvmpt 6282 |
. . . 4
⊢ (0 ∈
(0[,]1) → ((𝑥 ∈
(0[,]1) ↦ if(𝑥 ≤
(1 / 2), (2 · 𝑥),
1))‘0) = 0) |
| 112 | 53, 111 | mp1i 13 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘0) = 0) |
| 113 | 64, 62 | ltnlei 10158 |
. . . . . . . 8
⊢ ((1 / 2)
< 1 ↔ ¬ 1 ≤ (1 / 2)) |
| 114 | 67, 113 | mpbi 220 |
. . . . . . 7
⊢ ¬ 1
≤ (1 / 2) |
| 115 | | breq1 4656 |
. . . . . . 7
⊢ (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 /
2))) |
| 116 | 114, 115 | mtbiri 317 |
. . . . . 6
⊢ (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2)) |
| 117 | 116, 39 | syl 17 |
. . . . 5
⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = 1) |
| 118 | | 1ex 10035 |
. . . . 5
⊢ 1 ∈
V |
| 119 | 117, 109,
118 | fvmpt 6282 |
. . . 4
⊢ (1 ∈
(0[,]1) → ((𝑥 ∈
(0[,]1) ↦ if(𝑥 ≤
(1 / 2), (2 · 𝑥),
1))‘1) = 1) |
| 120 | 8, 119 | mp1i 13 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘1) = 1) |
| 121 | 23, 101, 112, 120 | reparpht 22798 |
. 2
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)))(
≃ph‘𝐽)𝐹) |
| 122 | 49, 121 | eqbrtrd 4675 |
1
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)𝐹) |