MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrecnv Structured version   Visualization version   GIF version

Theorem cnrecnv 13905
Description: The inverse to the canonical bijection from (ℝ × ℝ) to from cnref1o 11827. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypothesis
Ref Expression
cnrecnv.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
Assertion
Ref Expression
cnrecnv 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
Distinct variable groups:   𝑧,𝐹   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem cnrecnv
StepHypRef Expression
1 cnrecnv.1 . . . . . . 7 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
21cnref1o 11827 . . . . . 6 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
3 f1ocnv 6149 . . . . . 6 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:ℂ–1-1-onto→(ℝ × ℝ))
4 f1of 6137 . . . . . 6 (𝐹:ℂ–1-1-onto→(ℝ × ℝ) → 𝐹:ℂ⟶(ℝ × ℝ))
52, 3, 4mp2b 10 . . . . 5 𝐹:ℂ⟶(ℝ × ℝ)
65a1i 11 . . . 4 (⊤ → 𝐹:ℂ⟶(ℝ × ℝ))
76feqmptd 6249 . . 3 (⊤ → 𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧)))
87trud 1493 . 2 𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧))
9 df-ov 6653 . . . . . . 7 ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
10 recl 13850 . . . . . . . 8 (𝑧 ∈ ℂ → (ℜ‘𝑧) ∈ ℝ)
11 imcl 13851 . . . . . . . 8 (𝑧 ∈ ℂ → (ℑ‘𝑧) ∈ ℝ)
12 oveq1 6657 . . . . . . . . 9 (𝑥 = (ℜ‘𝑧) → (𝑥 + (i · 𝑦)) = ((ℜ‘𝑧) + (i · 𝑦)))
13 oveq2 6658 . . . . . . . . . 10 (𝑦 = (ℑ‘𝑧) → (i · 𝑦) = (i · (ℑ‘𝑧)))
1413oveq2d 6666 . . . . . . . . 9 (𝑦 = (ℑ‘𝑧) → ((ℜ‘𝑧) + (i · 𝑦)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
15 ovex 6678 . . . . . . . . 9 ((ℜ‘𝑧) + (i · (ℑ‘𝑧))) ∈ V
1612, 14, 1, 15ovmpt2 6796 . . . . . . . 8 (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ) → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
1710, 11, 16syl2anc 693 . . . . . . 7 (𝑧 ∈ ℂ → ((ℜ‘𝑧)𝐹(ℑ‘𝑧)) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
189, 17syl5eqr 2670 . . . . . 6 (𝑧 ∈ ℂ → (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
19 replim 13856 . . . . . 6 (𝑧 ∈ ℂ → 𝑧 = ((ℜ‘𝑧) + (i · (ℑ‘𝑧))))
2018, 19eqtr4d 2659 . . . . 5 (𝑧 ∈ ℂ → (𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) = 𝑧)
2120fveq2d 6195 . . . 4 (𝑧 ∈ ℂ → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = (𝐹𝑧))
22 opelxpi 5148 . . . . . 6 (((ℜ‘𝑧) ∈ ℝ ∧ (ℑ‘𝑧) ∈ ℝ) → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ))
2310, 11, 22syl2anc 693 . . . . 5 (𝑧 ∈ ℂ → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ))
24 f1ocnvfv1 6532 . . . . 5 ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ ∈ (ℝ × ℝ)) → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
252, 23, 24sylancr 695 . . . 4 (𝑧 ∈ ℂ → (𝐹‘(𝐹‘⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
2621, 25eqtr3d 2658 . . 3 (𝑧 ∈ ℂ → (𝐹𝑧) = ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
2726mpteq2ia 4740 . 2 (𝑧 ∈ ℂ ↦ (𝐹𝑧)) = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
288, 27eqtri 2644 1 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wtru 1484  wcel 1990  cop 4183  cmpt 4729   × cxp 5112  ccnv 5113  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  cc 9934  cr 9935  ici 9938   + caddc 9939   · cmul 9941  cre 13837  cim 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  cnrehmeo  22752  cnheiborlem  22753  mbfimaopnlem  23422
  Copyright terms: Public domain W3C validator