![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvordtrestixx | Structured version Visualization version GIF version |
Description: The restriction of the 'greater than' order to an interval gives the same topology as the subspace topology. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
Ref | Expression |
---|---|
cnvordtrestixx.1 | ⊢ 𝐴 ⊆ ℝ* |
cnvordtrestixx.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥[,]𝑦) ⊆ 𝐴) |
Ref | Expression |
---|---|
cnvordtrestixx | ⊢ ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lern 17225 | . . . . 5 ⊢ ℝ* = ran ≤ | |
2 | df-rn 5125 | . . . . 5 ⊢ ran ≤ = dom ◡ ≤ | |
3 | 1, 2 | eqtri 2644 | . . . 4 ⊢ ℝ* = dom ◡ ≤ |
4 | letsr 17227 | . . . . . 6 ⊢ ≤ ∈ TosetRel | |
5 | cnvtsr 17222 | . . . . . 6 ⊢ ( ≤ ∈ TosetRel → ◡ ≤ ∈ TosetRel ) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ ◡ ≤ ∈ TosetRel |
7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → ◡ ≤ ∈ TosetRel ) |
8 | cnvordtrestixx.1 | . . . . 5 ⊢ 𝐴 ⊆ ℝ* | |
9 | 8 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ⊆ ℝ*) |
10 | brcnvg 5303 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ℝ*) → (𝑦◡ ≤ 𝑧 ↔ 𝑧 ≤ 𝑦)) | |
11 | 10 | adantlr 751 | . . . . . . . . 9 ⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ℝ*) → (𝑦◡ ≤ 𝑧 ↔ 𝑧 ≤ 𝑦)) |
12 | simpr 477 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ℝ*) → 𝑧 ∈ ℝ*) | |
13 | simplr 792 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ℝ*) → 𝑥 ∈ 𝐴) | |
14 | brcnvg 5303 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ ℝ* ∧ 𝑥 ∈ 𝐴) → (𝑧◡ ≤ 𝑥 ↔ 𝑥 ≤ 𝑧)) | |
15 | 12, 13, 14 | syl2anc 693 | . . . . . . . . 9 ⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ℝ*) → (𝑧◡ ≤ 𝑥 ↔ 𝑥 ≤ 𝑧)) |
16 | 11, 15 | anbi12d 747 | . . . . . . . 8 ⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ℝ*) → ((𝑦◡ ≤ 𝑧 ∧ 𝑧◡ ≤ 𝑥) ↔ (𝑧 ≤ 𝑦 ∧ 𝑥 ≤ 𝑧))) |
17 | ancom 466 | . . . . . . . 8 ⊢ ((𝑧 ≤ 𝑦 ∧ 𝑥 ≤ 𝑧) ↔ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) | |
18 | 16, 17 | syl6bb 276 | . . . . . . 7 ⊢ (((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ℝ*) → ((𝑦◡ ≤ 𝑧 ∧ 𝑧◡ ≤ 𝑥) ↔ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦))) |
19 | 18 | rabbidva 3188 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → {𝑧 ∈ ℝ* ∣ (𝑦◡ ≤ 𝑧 ∧ 𝑧◡ ≤ 𝑥)} = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
20 | simpr 477 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
21 | 8, 20 | sseldi 3601 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
22 | simpl 473 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
23 | 8, 22 | sseldi 3601 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ ℝ*) |
24 | iccval 12214 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
25 | 21, 23, 24 | syl2anc 693 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥[,]𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
26 | cnvordtrestixx.2 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥[,]𝑦) ⊆ 𝐴) | |
27 | 26 | ancoms 469 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥[,]𝑦) ⊆ 𝐴) |
28 | 25, 27 | eqsstr3d 3640 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ⊆ 𝐴) |
29 | 19, 28 | eqsstrd 3639 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → {𝑧 ∈ ℝ* ∣ (𝑦◡ ≤ 𝑧 ∧ 𝑧◡ ≤ 𝑥)} ⊆ 𝐴) |
30 | 29 | adantl 482 | . . . 4 ⊢ ((⊤ ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → {𝑧 ∈ ℝ* ∣ (𝑦◡ ≤ 𝑧 ∧ 𝑧◡ ≤ 𝑥)} ⊆ 𝐴) |
31 | 3, 7, 9, 30 | ordtrest2 21008 | . . 3 ⊢ (⊤ → (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘◡ ≤ ) ↾t 𝐴)) |
32 | 31 | trud 1493 | . 2 ⊢ (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘◡ ≤ ) ↾t 𝐴) |
33 | tsrps 17221 | . . . . 5 ⊢ ( ≤ ∈ TosetRel → ≤ ∈ PosetRel) | |
34 | 4, 33 | ax-mp 5 | . . . 4 ⊢ ≤ ∈ PosetRel |
35 | ordtcnv 21005 | . . . 4 ⊢ ( ≤ ∈ PosetRel → (ordTop‘◡ ≤ ) = (ordTop‘ ≤ )) | |
36 | 34, 35 | ax-mp 5 | . . 3 ⊢ (ordTop‘◡ ≤ ) = (ordTop‘ ≤ ) |
37 | 36 | oveq1i 6660 | . 2 ⊢ ((ordTop‘◡ ≤ ) ↾t 𝐴) = ((ordTop‘ ≤ ) ↾t 𝐴) |
38 | 32, 37 | eqtr2i 2645 | 1 ⊢ ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ⊤wtru 1484 ∈ wcel 1990 {crab 2916 ∩ cin 3573 ⊆ wss 3574 class class class wbr 4653 × cxp 5112 ◡ccnv 5113 dom cdm 5114 ran crn 5115 ‘cfv 5888 (class class class)co 6650 ℝ*cxr 10073 ≤ cle 10075 [,]cicc 12178 ↾t crest 16081 ordTopcordt 16159 PosetRelcps 17198 TosetRel ctsr 17199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-icc 12182 df-rest 16083 df-topgen 16104 df-ordt 16161 df-ps 17200 df-tsr 17201 df-top 20699 df-topon 20716 df-bases 20750 |
This theorem is referenced by: xrge0iifhmeo 29982 |
Copyright terms: Public domain | W3C validator |