MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtrest2 Structured version   Visualization version   GIF version

Theorem ordtrest2 21008
Description: An interval-closed set 𝐴 in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in , but in other sets like there are interval-closed sets like (π, +∞) ∩ ℚ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordtrest2.1 𝑋 = dom 𝑅
ordtrest2.2 (𝜑𝑅 ∈ TosetRel )
ordtrest2.3 (𝜑𝐴𝑋)
ordtrest2.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴)
Assertion
Ref Expression
ordtrest2 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = ((ordTop‘𝑅) ↾t 𝐴))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧

Proof of Theorem ordtrest2
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtrest2.2 . . . 4 (𝜑𝑅 ∈ TosetRel )
2 tsrps 17221 . . . 4 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ PosetRel)
4 ordtrest2.1 . . . . 5 𝑋 = dom 𝑅
5 dmexg 7097 . . . . . 6 (𝑅 ∈ TosetRel → dom 𝑅 ∈ V)
61, 5syl 17 . . . . 5 (𝜑 → dom 𝑅 ∈ V)
74, 6syl5eqel 2705 . . . 4 (𝜑𝑋 ∈ V)
8 ordtrest2.3 . . . 4 (𝜑𝐴𝑋)
97, 8ssexd 4805 . . 3 (𝜑𝐴 ∈ V)
10 ordtrest 21006 . . 3 ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ V) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
113, 9, 10syl2anc 693 . 2 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
12 eqid 2622 . . . . . . . 8 ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) = ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})
13 eqid 2622 . . . . . . . 8 ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}) = ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})
144, 12, 13ordtval 20993 . . . . . . 7 (𝑅 ∈ TosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))))
151, 14syl 17 . . . . . 6 (𝜑 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))))
1615oveq1d 6665 . . . . 5 (𝜑 → ((ordTop‘𝑅) ↾t 𝐴) = ((topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))) ↾t 𝐴))
17 fibas 20781 . . . . . 6 (fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ∈ TopBases
18 tgrest 20963 . . . . . 6 (((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ∈ TopBases ∧ 𝐴 ∈ V) → (topGen‘((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴)) = ((topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))) ↾t 𝐴))
1917, 9, 18sylancr 695 . . . . 5 (𝜑 → (topGen‘((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴)) = ((topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))) ↾t 𝐴))
2016, 19eqtr4d 2659 . . . 4 (𝜑 → ((ordTop‘𝑅) ↾t 𝐴) = (topGen‘((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴)))
21 firest 16093 . . . . 5 (fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴)) = ((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴)
2221fveq2i 6194 . . . 4 (topGen‘(fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴))) = (topGen‘((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴))
2320, 22syl6eqr 2674 . . 3 (𝜑 → ((ordTop‘𝑅) ↾t 𝐴) = (topGen‘(fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴))))
24 inex1g 4801 . . . . . 6 (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
251, 24syl 17 . . . . 5 (𝜑 → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
26 ordttop 21004 . . . . 5 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
2725, 26syl 17 . . . 4 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
284, 12, 13ordtuni 20994 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 = ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))
291, 28syl 17 . . . . . . . 8 (𝜑𝑋 = ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))
3029, 7eqeltrrd 2702 . . . . . . 7 (𝜑 ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V)
31 uniexb 6973 . . . . . . 7 (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V ↔ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V)
3230, 31sylibr 224 . . . . . 6 (𝜑 → ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V)
33 restval 16087 . . . . . 6 ((({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V ∧ 𝐴 ∈ V) → (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴) = ran (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)))
3432, 9, 33syl2anc 693 . . . . 5 (𝜑 → (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴) = ran (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)))
35 sseqin2 3817 . . . . . . . . . . . 12 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
368, 35sylib 208 . . . . . . . . . . 11 (𝜑 → (𝑋𝐴) = 𝐴)
37 eqid 2622 . . . . . . . . . . . . . . 15 dom (𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴))
3837ordttopon 20997 . . . . . . . . . . . . . 14 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))))
3925, 38syl 17 . . . . . . . . . . . . 13 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))))
404psssdm 17216 . . . . . . . . . . . . . . 15 ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
413, 8, 40syl2anc 693 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
4241fveq2d 6195 . . . . . . . . . . . . 13 (𝜑 → (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴))
4339, 42eleqtrd 2703 . . . . . . . . . . . 12 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴))
44 toponmax 20730 . . . . . . . . . . . 12 ((ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
4543, 44syl 17 . . . . . . . . . . 11 (𝜑𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
4636, 45eqeltrd 2701 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
47 elsni 4194 . . . . . . . . . . . 12 (𝑣 ∈ {𝑋} → 𝑣 = 𝑋)
4847ineq1d 3813 . . . . . . . . . . 11 (𝑣 ∈ {𝑋} → (𝑣𝐴) = (𝑋𝐴))
4948eleq1d 2686 . . . . . . . . . 10 (𝑣 ∈ {𝑋} → ((𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (𝑋𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
5046, 49syl5ibrcom 237 . . . . . . . . 9 (𝜑 → (𝑣 ∈ {𝑋} → (𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
5150ralrimiv 2965 . . . . . . . 8 (𝜑 → ∀𝑣 ∈ {𝑋} (𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
52 ordtrest2.4 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴)
534, 1, 8, 52ordtrest2lem 21007 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
54 df-rn 5125 . . . . . . . . . . 11 ran 𝑅 = dom 𝑅
55 cnvtsr 17222 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel → 𝑅 ∈ TosetRel )
561, 55syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ TosetRel )
574psrn 17209 . . . . . . . . . . . . 13 (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅)
583, 57syl 17 . . . . . . . . . . . 12 (𝜑𝑋 = ran 𝑅)
598, 58sseqtrd 3641 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ran 𝑅)
6058adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑋 = ran 𝑅)
61 rabeq 3192 . . . . . . . . . . . . . . 15 (𝑋 = ran 𝑅 → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} = {𝑧 ∈ ran 𝑅 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)})
6260, 61syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} = {𝑧 ∈ ran 𝑅 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)})
63 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
64 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
6563, 64brcnv 5305 . . . . . . . . . . . . . . . . 17 (𝑦𝑅𝑧𝑧𝑅𝑦)
66 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
6764, 66brcnv 5305 . . . . . . . . . . . . . . . . 17 (𝑧𝑅𝑥𝑥𝑅𝑧)
6865, 67anbi12ci 734 . . . . . . . . . . . . . . . 16 ((𝑦𝑅𝑧𝑧𝑅𝑥) ↔ (𝑥𝑅𝑧𝑧𝑅𝑦))
6968a1i 11 . . . . . . . . . . . . . . 15 (𝑧 ∈ ran 𝑅 → ((𝑦𝑅𝑧𝑧𝑅𝑥) ↔ (𝑥𝑅𝑧𝑧𝑅𝑦)))
7069rabbiia 3185 . . . . . . . . . . . . . 14 {𝑧 ∈ ran 𝑅 ∣ (𝑦𝑅𝑧𝑧𝑅𝑥)} = {𝑧 ∈ ran 𝑅 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)}
7162, 70syl6eqr 2674 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} = {𝑧 ∈ ran 𝑅 ∣ (𝑦𝑅𝑧𝑧𝑅𝑥)})
7271, 52eqsstr3d 3640 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧 ∈ ran 𝑅 ∣ (𝑦𝑅𝑧𝑧𝑅𝑥)} ⊆ 𝐴)
7372ancom2s 844 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑥𝐴)) → {𝑧 ∈ ran 𝑅 ∣ (𝑦𝑅𝑧𝑧𝑅𝑥)} ⊆ 𝐴)
7454, 56, 59, 73ordtrest2lem 21007 . . . . . . . . . 10 (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ ran 𝑅 ↦ {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
75 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ V
7675, 64brcnv 5305 . . . . . . . . . . . . . . . . 17 (𝑤𝑅𝑧𝑧𝑅𝑤)
7776bicomi 214 . . . . . . . . . . . . . . . 16 (𝑧𝑅𝑤𝑤𝑅𝑧)
7877a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑧𝑅𝑤𝑤𝑅𝑧))
7978notbid 308 . . . . . . . . . . . . . 14 (𝜑 → (¬ 𝑧𝑅𝑤 ↔ ¬ 𝑤𝑅𝑧))
8058, 79rabeqbidv 3195 . . . . . . . . . . . . 13 (𝜑 → {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤} = {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧})
8158, 80mpteq12dv 4733 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}) = (𝑧 ∈ ran 𝑅 ↦ {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧}))
8281rneqd 5353 . . . . . . . . . . 11 (𝜑 → ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}) = ran (𝑧 ∈ ran 𝑅 ↦ {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧}))
83 cnvin 5540 . . . . . . . . . . . . . . 15 (𝑅 ∩ (𝐴 × 𝐴)) = (𝑅(𝐴 × 𝐴))
84 cnvxp 5551 . . . . . . . . . . . . . . . 16 (𝐴 × 𝐴) = (𝐴 × 𝐴)
8584ineq2i 3811 . . . . . . . . . . . . . . 15 (𝑅(𝐴 × 𝐴)) = (𝑅 ∩ (𝐴 × 𝐴))
8683, 85eqtri 2644 . . . . . . . . . . . . . 14 (𝑅 ∩ (𝐴 × 𝐴)) = (𝑅 ∩ (𝐴 × 𝐴))
8786fveq2i 6194 . . . . . . . . . . . . 13 (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))
88 psss 17214 . . . . . . . . . . . . . . 15 (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)
893, 88syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)
90 ordtcnv 21005 . . . . . . . . . . . . . 14 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
9189, 90syl 17 . . . . . . . . . . . . 13 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
9287, 91syl5reqr 2671 . . . . . . . . . . . 12 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
9392eleq2d 2687 . . . . . . . . . . 11 (𝜑 → ((𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9482, 93raleqbidv 3152 . . . . . . . . . 10 (𝜑 → (∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑣 ∈ ran (𝑧 ∈ ran 𝑅 ↦ {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9574, 94mpbird 247 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
96 ralunb 3794 . . . . . . . . 9 (∀𝑣 ∈ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∧ ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9753, 95, 96sylanbrc 698 . . . . . . . 8 (𝜑 → ∀𝑣 ∈ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
98 ralunb 3794 . . . . . . . 8 (∀𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (∀𝑣 ∈ {𝑋} (𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∧ ∀𝑣 ∈ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9951, 97, 98sylanbrc 698 . . . . . . 7 (𝜑 → ∀𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
100 eqid 2622 . . . . . . . 8 (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)) = (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴))
101100fmpt 6381 . . . . . . 7 (∀𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)):({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))⟶(ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10299, 101sylib 208 . . . . . 6 (𝜑 → (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)):({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))⟶(ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
103 frn 6053 . . . . . 6 ((𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)):({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))⟶(ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) → ran (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
104102, 103syl 17 . . . . 5 (𝜑 → ran (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10534, 104eqsstrd 3639 . . . 4 (𝜑 → (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
106 tgfiss 20795 . . . 4 (((ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top ∧ (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) → (topGen‘(fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴))) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10727, 105, 106syl2anc 693 . . 3 (𝜑 → (topGen‘(fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴))) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10823, 107eqsstrd 3639 . 2 (𝜑 → ((ordTop‘𝑅) ↾t 𝐴) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10911, 108eqssd 3620 1 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = ((ordTop‘𝑅) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cun 3572  cin 3573  wss 3574  {csn 4177   cuni 4436   class class class wbr 4653  cmpt 4729   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  ficfi 8316  t crest 16081  topGenctg 16098  ordTopcordt 16159  PosetRelcps 17198   TosetRel ctsr 17199  Topctop 20698  TopOnctopon 20715  TopBasesctb 20749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-ordt 16161  df-ps 17200  df-tsr 17201  df-top 20699  df-topon 20716  df-bases 20750
This theorem is referenced by:  ordtrestixx  21026  cnvordtrestixx  29959
  Copyright terms: Public domain W3C validator