MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncn Structured version   Visualization version   Unicode version

Theorem conncn 21229
Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
conncn.x  |-  X  = 
U. J
conncn.j  |-  ( ph  ->  J  e. Conn )
conncn.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
conncn.u  |-  ( ph  ->  U  e.  K )
conncn.c  |-  ( ph  ->  U  e.  ( Clsd `  K ) )
conncn.a  |-  ( ph  ->  A  e.  X )
conncn.1  |-  ( ph  ->  ( F `  A
)  e.  U )
Assertion
Ref Expression
conncn  |-  ( ph  ->  F : X --> U )

Proof of Theorem conncn
StepHypRef Expression
1 conncn.f . . . 4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2 conncn.x . . . . 5  |-  X  = 
U. J
3 eqid 2622 . . . . 5  |-  U. K  =  U. K
42, 3cnf 21050 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> U. K )
51, 4syl 17 . . 3  |-  ( ph  ->  F : X --> U. K
)
6 ffn 6045 . . 3  |-  ( F : X --> U. K  ->  F  Fn  X )
75, 6syl 17 . 2  |-  ( ph  ->  F  Fn  X )
8 frn 6053 . . . 4  |-  ( F : X --> U. K  ->  ran  F  C_  U. K
)
95, 8syl 17 . . 3  |-  ( ph  ->  ran  F  C_  U. K
)
10 conncn.j . . . 4  |-  ( ph  ->  J  e. Conn )
11 dffn4 6121 . . . . . 6  |-  ( F  Fn  X  <->  F : X -onto-> ran  F )
127, 11sylib 208 . . . . 5  |-  ( ph  ->  F : X -onto-> ran  F )
13 cntop2 21045 . . . . . . . 8  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
141, 13syl 17 . . . . . . 7  |-  ( ph  ->  K  e.  Top )
153restuni 20966 . . . . . . 7  |-  ( ( K  e.  Top  /\  ran  F  C_  U. K )  ->  ran  F  =  U. ( Kt  ran  F ) )
1614, 9, 15syl2anc 693 . . . . . 6  |-  ( ph  ->  ran  F  =  U. ( Kt  ran  F ) )
17 foeq3 6113 . . . . . 6  |-  ( ran 
F  =  U. ( Kt  ran  F )  ->  ( F : X -onto-> ran  F  <->  F : X -onto-> U. ( Kt  ran  F ) ) )
1816, 17syl 17 . . . . 5  |-  ( ph  ->  ( F : X -onto-> ran  F  <->  F : X -onto-> U. ( Kt  ran  F ) ) )
1912, 18mpbid 222 . . . 4  |-  ( ph  ->  F : X -onto-> U. ( Kt  ran  F ) )
203toptopon 20722 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
2114, 20sylib 208 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
22 ssid 3624 . . . . . . 7  |-  ran  F  C_ 
ran  F
2322a1i 11 . . . . . 6  |-  ( ph  ->  ran  F  C_  ran  F )
24 cnrest2 21090 . . . . . 6  |-  ( ( K  e.  (TopOn `  U. K )  /\  ran  F 
C_  ran  F  /\  ran  F  C_  U. K )  ->  ( F  e.  ( J  Cn  K
)  <->  F  e.  ( J  Cn  ( Kt  ran  F
) ) ) )
2521, 23, 9, 24syl3anc 1326 . . . . 5  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
F  e.  ( J  Cn  ( Kt  ran  F
) ) ) )
261, 25mpbid 222 . . . 4  |-  ( ph  ->  F  e.  ( J  Cn  ( Kt  ran  F
) ) )
27 eqid 2622 . . . . 5  |-  U. ( Kt  ran  F )  =  U. ( Kt  ran  F )
2827cnconn 21225 . . . 4  |-  ( ( J  e. Conn  /\  F : X -onto-> U. ( Kt  ran  F
)  /\  F  e.  ( J  Cn  ( Kt  ran  F ) ) )  ->  ( Kt  ran  F
)  e. Conn )
2910, 19, 26, 28syl3anc 1326 . . 3  |-  ( ph  ->  ( Kt  ran  F )  e. Conn
)
30 conncn.u . . 3  |-  ( ph  ->  U  e.  K )
31 conncn.1 . . . 4  |-  ( ph  ->  ( F `  A
)  e.  U )
32 conncn.a . . . . 5  |-  ( ph  ->  A  e.  X )
33 fnfvelrn 6356 . . . . 5  |-  ( ( F  Fn  X  /\  A  e.  X )  ->  ( F `  A
)  e.  ran  F
)
347, 32, 33syl2anc 693 . . . 4  |-  ( ph  ->  ( F `  A
)  e.  ran  F
)
35 inelcm 4032 . . . 4  |-  ( ( ( F `  A
)  e.  U  /\  ( F `  A )  e.  ran  F )  ->  ( U  i^i  ran 
F )  =/=  (/) )
3631, 34, 35syl2anc 693 . . 3  |-  ( ph  ->  ( U  i^i  ran  F )  =/=  (/) )
37 conncn.c . . 3  |-  ( ph  ->  U  e.  ( Clsd `  K ) )
383, 9, 29, 30, 36, 37connsubclo 21227 . 2  |-  ( ph  ->  ran  F  C_  U
)
39 df-f 5892 . 2  |-  ( F : X --> U  <->  ( F  Fn  X  /\  ran  F  C_  U ) )
407, 38, 39sylanbrc 698 1  |-  ( ph  ->  F : X --> U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990    =/= wne 2794    i^i cin 3573    C_ wss 3574   (/)c0 3915   U.cuni 4436   ran crn 5115    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698  TopOnctopon 20715   Clsdccld 20820    Cn ccn 21028  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cn 21031  df-conn 21215
This theorem is referenced by:  pconnconn  31213  cvmliftmolem1  31263  cvmlift2lem9  31293  cvmlift3lem6  31306
  Copyright terms: Public domain W3C validator