MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  degltlem1 Structured version   Visualization version   GIF version

Theorem degltlem1 23832
Description: Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Assertion
Ref Expression
degltlem1 ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))

Proof of Theorem degltlem1
StepHypRef Expression
1 elun 3753 . 2 (𝑋 ∈ (ℕ0 ∪ {-∞}) ↔ (𝑋 ∈ ℕ0𝑋 ∈ {-∞}))
2 nn0z 11400 . . . 4 (𝑋 ∈ ℕ0𝑋 ∈ ℤ)
3 zltlem1 11430 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
42, 3sylan 488 . . 3 ((𝑋 ∈ ℕ0𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
5 zre 11381 . . . . . . 7 (𝑌 ∈ ℤ → 𝑌 ∈ ℝ)
6 mnflt 11957 . . . . . . 7 (𝑌 ∈ ℝ → -∞ < 𝑌)
75, 6syl 17 . . . . . 6 (𝑌 ∈ ℤ → -∞ < 𝑌)
8 peano2zm 11420 . . . . . . . . 9 (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℤ)
98zred 11482 . . . . . . . 8 (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℝ)
109rexrd 10089 . . . . . . 7 (𝑌 ∈ ℤ → (𝑌 − 1) ∈ ℝ*)
11 mnfle 11969 . . . . . . 7 ((𝑌 − 1) ∈ ℝ* → -∞ ≤ (𝑌 − 1))
1210, 11syl 17 . . . . . 6 (𝑌 ∈ ℤ → -∞ ≤ (𝑌 − 1))
137, 122thd 255 . . . . 5 (𝑌 ∈ ℤ → (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1)))
14 elsni 4194 . . . . . 6 (𝑋 ∈ {-∞} → 𝑋 = -∞)
15 breq1 4656 . . . . . . 7 (𝑋 = -∞ → (𝑋 < 𝑌 ↔ -∞ < 𝑌))
16 breq1 4656 . . . . . . 7 (𝑋 = -∞ → (𝑋 ≤ (𝑌 − 1) ↔ -∞ ≤ (𝑌 − 1)))
1715, 16bibi12d 335 . . . . . 6 (𝑋 = -∞ → ((𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)) ↔ (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1))))
1814, 17syl 17 . . . . 5 (𝑋 ∈ {-∞} → ((𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)) ↔ (-∞ < 𝑌 ↔ -∞ ≤ (𝑌 − 1))))
1913, 18syl5ibrcom 237 . . . 4 (𝑌 ∈ ℤ → (𝑋 ∈ {-∞} → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1))))
2019impcom 446 . . 3 ((𝑋 ∈ {-∞} ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
214, 20jaoian 824 . 2 (((𝑋 ∈ ℕ0𝑋 ∈ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
221, 21sylanb 489 1 ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌𝑋 ≤ (𝑌 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  cun 3572  {csn 4177   class class class wbr 4653  (class class class)co 6650  cr 9935  1c1 9937  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  cmin 10266  0cn0 11292  cz 11377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378
This theorem is referenced by:  degltp1le  23833  ply1divex  23896
  Copyright terms: Public domain W3C validator