Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem3 Structured version   Visualization version   GIF version

Theorem dnibndlem3 32470
Description: Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem3.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem3.2 (𝜑𝐴 ∈ ℝ)
dnibndlem3.3 (𝜑𝐵 ∈ ℝ)
dnibndlem3.4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
Assertion
Ref Expression
dnibndlem3 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))

Proof of Theorem dnibndlem3
StepHypRef Expression
1 dnibndlem3.3 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
21recnd 10068 . . . . . 6 (𝜑𝐵 ∈ ℂ)
3 halfre 11246 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
43a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
51, 4jca 554 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
6 readdcl 10019 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐵 + (1 / 2)) ∈ ℝ)
75, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
8 reflcl 12597 . . . . . . . . 9 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
97, 8syl 17 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
109recnd 10068 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
11 halfcn 11247 . . . . . . . 8 (1 / 2) ∈ ℂ
1211a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
1310, 12subcld 10392 . . . . . 6 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ)
14 dnibndlem3.2 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1514recnd 10068 . . . . . 6 (𝜑𝐴 ∈ ℂ)
162, 13, 153jca 1242 . . . . 5 (𝜑 → (𝐵 ∈ ℂ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ ∧ 𝐴 ∈ ℂ))
17 npncan 10302 . . . . 5 ((𝐵 ∈ ℂ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = (𝐵𝐴))
1816, 17syl 17 . . . 4 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = (𝐵𝐴))
1918eqcomd 2628 . . 3 (𝜑 → (𝐵𝐴) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)))
20 dnibndlem3.4 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
2120oveq1d 6665 . . . . . 6 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) = (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)))
2214, 4jca 554 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
23 readdcl 10019 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
25 reflcl 12597 . . . . . . . . . 10 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2624, 25syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2726recnd 10068 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
28 1cnd 10056 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
2927, 28, 123jca 1242 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 1 ∈ ℂ ∧ (1 / 2) ∈ ℂ))
30 addsubass 10291 . . . . . . 7 (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 1 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))))
3129, 30syl 17 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))))
32 1mhlfehlf 11251 . . . . . . . 8 (1 − (1 / 2)) = (1 / 2)
3332a1i 11 . . . . . . 7 (𝜑 → (1 − (1 / 2)) = (1 / 2))
3433oveq2d 6666 . . . . . 6 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
3521, 31, 343eqtrd 2660 . . . . 5 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
3635oveq1d 6665 . . . 4 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
3736oveq2d 6666 . . 3 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
3819, 37eqtrd 2656 . 2 (𝜑 → (𝐵𝐴) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
3938fveq2d 6195 1 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  1c1 9937   + caddc 9939  cmin 10266   / cdiv 10684  2c2 11070  cfl 12591  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fl 12593
This theorem is referenced by:  dnibndlem9  32476
  Copyright terms: Public domain W3C validator