Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsacongtr Structured version   Visualization version   GIF version

Theorem dvdsacongtr 37551
Description: Alternating congruence passes from a base to a dividing base. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
dvdsacongtr (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐷𝐴 ∧ (𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)))) → (𝐷 ∥ (𝐵𝐶) ∨ 𝐷 ∥ (𝐵 − -𝐶)))

Proof of Theorem dvdsacongtr
StepHypRef Expression
1 simplr 792 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐷𝐴)
2 simpr 477 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐴 ∥ (𝐵𝐶))
3 simprr 796 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐷 ∈ ℤ)
43ad2antrr 762 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐷 ∈ ℤ)
5 simp-4l 806 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐴 ∈ ℤ)
6 simplr 792 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐵 ∈ ℤ)
76ad2antrr 762 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐵 ∈ ℤ)
8 simprl 794 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝐶 ∈ ℤ)
98ad2antrr 762 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐶 ∈ ℤ)
107, 9zsubcld 11487 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → (𝐵𝐶) ∈ ℤ)
11 dvdstr 15018 . . . . . . 7 ((𝐷 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ) → ((𝐷𝐴𝐴 ∥ (𝐵𝐶)) → 𝐷 ∥ (𝐵𝐶)))
124, 5, 10, 11syl3anc 1326 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → ((𝐷𝐴𝐴 ∥ (𝐵𝐶)) → 𝐷 ∥ (𝐵𝐶)))
131, 2, 12mp2and 715 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵𝐶)) → 𝐷 ∥ (𝐵𝐶))
1413ex 450 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) → (𝐴 ∥ (𝐵𝐶) → 𝐷 ∥ (𝐵𝐶)))
15 simplr 792 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → 𝐷𝐴)
16 simpr 477 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → 𝐴 ∥ (𝐵 − -𝐶))
173ad2antrr 762 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → 𝐷 ∈ ℤ)
18 simp-4l 806 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → 𝐴 ∈ ℤ)
196ad2antrr 762 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → 𝐵 ∈ ℤ)
208ad2antrr 762 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → 𝐶 ∈ ℤ)
2120znegcld 11484 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → -𝐶 ∈ ℤ)
2219, 21zsubcld 11487 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → (𝐵 − -𝐶) ∈ ℤ)
23 dvdstr 15018 . . . . . . 7 ((𝐷 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐵 − -𝐶) ∈ ℤ) → ((𝐷𝐴𝐴 ∥ (𝐵 − -𝐶)) → 𝐷 ∥ (𝐵 − -𝐶)))
2417, 18, 22, 23syl3anc 1326 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → ((𝐷𝐴𝐴 ∥ (𝐵 − -𝐶)) → 𝐷 ∥ (𝐵 − -𝐶)))
2515, 16, 24mp2and 715 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) ∧ 𝐴 ∥ (𝐵 − -𝐶)) → 𝐷 ∥ (𝐵 − -𝐶))
2625ex 450 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) → (𝐴 ∥ (𝐵 − -𝐶) → 𝐷 ∥ (𝐵 − -𝐶)))
2714, 26orim12d 883 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) ∧ 𝐷𝐴) → ((𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)) → (𝐷 ∥ (𝐵𝐶) ∨ 𝐷 ∥ (𝐵 − -𝐶))))
2827expimpd 629 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐷𝐴 ∧ (𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶))) → (𝐷 ∥ (𝐵𝐶) ∨ 𝐷 ∥ (𝐵 − -𝐶))))
29283impia 1261 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝐷𝐴 ∧ (𝐴 ∥ (𝐵𝐶) ∨ 𝐴 ∥ (𝐵 − -𝐶)))) → (𝐷 ∥ (𝐵𝐶) ∨ 𝐷 ∥ (𝐵 − -𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037  wcel 1990   class class class wbr 4653  (class class class)co 6650  cmin 10266  -cneg 10267  cz 11377  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-dvds 14984
This theorem is referenced by:  jm2.27a  37572
  Copyright terms: Public domain W3C validator