Proof of Theorem jm2.27a
| Step | Hyp | Ref
| Expression |
| 1 | | jm2.27a23 |
. 2
⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝑃)) |
| 2 | | 2z 11409 |
. . . . . 6
⊢ 2 ∈
ℤ |
| 3 | | jm2.27a3 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℕ) |
| 4 | 3 | nnzd 11481 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 5 | | zmulcl 11426 |
. . . . . 6
⊢ ((2
∈ ℤ ∧ 𝐶
∈ ℤ) → (2 · 𝐶) ∈ ℤ) |
| 6 | 2, 4, 5 | sylancr 695 |
. . . . 5
⊢ (𝜑 → (2 · 𝐶) ∈
ℤ) |
| 7 | | jm2.27a2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℕ) |
| 8 | 7 | nnzd 11481 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 9 | | jm2.27a27 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ℤ) |
| 10 | | jm2.27a21 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 11 | | jm2.27a8 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 ∈
ℕ0) |
| 12 | 11 | nn0zd 11480 |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ ℤ) |
| 13 | | jm2.27a19 |
. . . . . . . 8
⊢ (𝜑 → (2 · 𝐶) ∥ (𝐻 − 𝐵)) |
| 14 | | congsym 37535 |
. . . . . . . 8
⊢ ((((2
· 𝐶) ∈ ℤ
∧ 𝐻 ∈ ℤ)
∧ (𝐵 ∈ ℤ
∧ (2 · 𝐶)
∥ (𝐻 − 𝐵))) → (2 · 𝐶) ∥ (𝐵 − 𝐻)) |
| 15 | 6, 12, 8, 13, 14 | syl22anc 1327 |
. . . . . . 7
⊢ (𝜑 → (2 · 𝐶) ∥ (𝐵 − 𝐻)) |
| 16 | | jm2.27a17 |
. . . . . . . 8
⊢ (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1)) |
| 17 | | jm2.27a13 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈
(ℤ≥‘2)) |
| 18 | 11 | nn0ge0d 11354 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤ 𝐻) |
| 19 | | rmy0 37494 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈
(ℤ≥‘2) → (𝐺 Yrm 0) = 0) |
| 20 | 17, 19 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 Yrm 0) = 0) |
| 21 | | jm2.27a29 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐻 = (𝐺 Yrm 𝑅)) |
| 22 | 21 | eqcomd 2628 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 Yrm 𝑅) = 𝐻) |
| 23 | 18, 20, 22 | 3brtr4d 4685 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅)) |
| 24 | | 0zd 11389 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
ℤ) |
| 25 | | lermy 37522 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈
(ℤ≥‘2) ∧ 0 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (0 ≤ 𝑅 ↔ (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅))) |
| 26 | 17, 24, 9, 25 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 ≤ 𝑅 ↔ (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅))) |
| 27 | 23, 26 | mpbird 247 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ 𝑅) |
| 28 | | elnn0z 11390 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℕ0
↔ (𝑅 ∈ ℤ
∧ 0 ≤ 𝑅)) |
| 29 | 9, 27, 28 | sylanbrc 698 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
| 30 | | jm2.16nn0 37571 |
. . . . . . . . . 10
⊢ ((𝐺 ∈
(ℤ≥‘2) ∧ 𝑅 ∈ ℕ0) → (𝐺 − 1) ∥ ((𝐺 Yrm 𝑅) − 𝑅)) |
| 31 | 17, 29, 30 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 − 1) ∥ ((𝐺 Yrm 𝑅) − 𝑅)) |
| 32 | 21 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝜑 → (𝐻 − 𝑅) = ((𝐺 Yrm 𝑅) − 𝑅)) |
| 33 | 31, 32 | breqtrrd 4681 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 − 1) ∥ (𝐻 − 𝑅)) |
| 34 | | jm2.27a7 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈
ℕ0) |
| 35 | 34 | nn0zd 11480 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ ℤ) |
| 36 | | peano2zm 11420 |
. . . . . . . . . 10
⊢ (𝐺 ∈ ℤ → (𝐺 − 1) ∈
ℤ) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 − 1) ∈ ℤ) |
| 38 | 12, 9 | zsubcld 11487 |
. . . . . . . . 9
⊢ (𝜑 → (𝐻 − 𝑅) ∈ ℤ) |
| 39 | | dvdstr 15018 |
. . . . . . . . 9
⊢ (((2
· 𝐶) ∈ ℤ
∧ (𝐺 − 1) ∈
ℤ ∧ (𝐻 −
𝑅) ∈ ℤ) →
(((2 · 𝐶) ∥
(𝐺 − 1) ∧ (𝐺 − 1) ∥ (𝐻 − 𝑅)) → (2 · 𝐶) ∥ (𝐻 − 𝑅))) |
| 40 | 6, 37, 38, 39 | syl3anc 1326 |
. . . . . . . 8
⊢ (𝜑 → (((2 · 𝐶) ∥ (𝐺 − 1) ∧ (𝐺 − 1) ∥ (𝐻 − 𝑅)) → (2 · 𝐶) ∥ (𝐻 − 𝑅))) |
| 41 | 16, 33, 40 | mp2and 715 |
. . . . . . 7
⊢ (𝜑 → (2 · 𝐶) ∥ (𝐻 − 𝑅)) |
| 42 | | congtr 37532 |
. . . . . . 7
⊢ ((((2
· 𝐶) ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ (𝐻 ∈ ℤ
∧ 𝑅 ∈ ℤ)
∧ ((2 · 𝐶)
∥ (𝐵 − 𝐻) ∧ (2 · 𝐶) ∥ (𝐻 − 𝑅))) → (2 · 𝐶) ∥ (𝐵 − 𝑅)) |
| 43 | 6, 8, 12, 9, 15, 41, 42 | syl222anc 1342 |
. . . . . 6
⊢ (𝜑 → (2 · 𝐶) ∥ (𝐵 − 𝑅)) |
| 44 | 43 | orcd 407 |
. . . . 5
⊢ (𝜑 → ((2 · 𝐶) ∥ (𝐵 − 𝑅) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑅))) |
| 45 | | jm2.27a24 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ ℤ) |
| 46 | | zmulcl 11426 |
. . . . . . 7
⊢ ((2
∈ ℤ ∧ 𝑄
∈ ℤ) → (2 · 𝑄) ∈ ℤ) |
| 47 | 2, 45, 46 | sylancr 695 |
. . . . . 6
⊢ (𝜑 → (2 · 𝑄) ∈
ℤ) |
| 48 | | zsqcl 12934 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ ℤ → (𝐶↑2) ∈
ℤ) |
| 49 | 4, 48 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶↑2) ∈ ℤ) |
| 50 | | dvdsmul2 15004 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℤ ∧ (𝐶↑2) ∈ ℤ) → (𝐶↑2) ∥ (2 ·
(𝐶↑2))) |
| 51 | 2, 49, 50 | sylancr 695 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶↑2) ∥ (2 · (𝐶↑2))) |
| 52 | | jm2.27a10 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
| 53 | 52 | nn0zd 11480 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 54 | 53 | peano2zd 11485 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐽 + 1) ∈ ℤ) |
| 55 | | zmulcl 11426 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℤ ∧ (𝐶↑2) ∈ ℤ) → (2 ·
(𝐶↑2)) ∈
ℤ) |
| 56 | 2, 49, 55 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 · (𝐶↑2)) ∈
ℤ) |
| 57 | | dvdsmultr2 15021 |
. . . . . . . . . . . . 13
⊢ (((𝐶↑2) ∈ ℤ ∧
(𝐽 + 1) ∈ ℤ
∧ (2 · (𝐶↑2)) ∈ ℤ) → ((𝐶↑2) ∥ (2 ·
(𝐶↑2)) → (𝐶↑2) ∥ ((𝐽 + 1) · (2 ·
(𝐶↑2))))) |
| 58 | 49, 54, 56, 57 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶↑2) ∥ (2 · (𝐶↑2)) → (𝐶↑2) ∥ ((𝐽 + 1) · (2 ·
(𝐶↑2))))) |
| 59 | 51, 58 | mpd 15 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶↑2) ∥ ((𝐽 + 1) · (2 · (𝐶↑2)))) |
| 60 | 1 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶↑2) = ((𝐴 Yrm 𝑃)↑2)) |
| 61 | | jm2.27a15 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2)))) |
| 62 | | jm2.27a26 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 = (𝐴 Yrm 𝑄)) |
| 63 | 61, 62 | eqtr3d 2658 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐽 + 1) · (2 · (𝐶↑2))) = (𝐴 Yrm 𝑄)) |
| 64 | 59, 60, 63 | 3brtr3d 4684 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄)) |
| 65 | | jm2.27a1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈
(ℤ≥‘2)) |
| 66 | 54 | zred 11482 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐽 + 1) ∈ ℝ) |
| 67 | 56 | zred 11482 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2 · (𝐶↑2)) ∈
ℝ) |
| 68 | | nn0p1nn 11332 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐽 ∈ ℕ0
→ (𝐽 + 1) ∈
ℕ) |
| 69 | 52, 68 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐽 + 1) ∈ ℕ) |
| 70 | 69 | nngt0d 11064 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 < (𝐽 + 1)) |
| 71 | | 2nn 11185 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℕ |
| 72 | 3 | nnsqcld 13029 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐶↑2) ∈ ℕ) |
| 73 | | nnmulcl 11043 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℕ ∧ (𝐶↑2) ∈ ℕ) → (2 ·
(𝐶↑2)) ∈
ℕ) |
| 74 | 71, 72, 73 | sylancr 695 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (2 · (𝐶↑2)) ∈
ℕ) |
| 75 | 74 | nngt0d 11064 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 < (2 · (𝐶↑2))) |
| 76 | 66, 67, 70, 75 | mulgt0d 10192 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 < ((𝐽 + 1) · (2 · (𝐶↑2)))) |
| 77 | 76, 61 | breqtrrd 4681 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 𝐸) |
| 78 | | rmy0 37494 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈
(ℤ≥‘2) → (𝐴 Yrm 0) = 0) |
| 79 | 65, 78 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 Yrm 0) = 0) |
| 80 | 62 | eqcomd 2628 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 Yrm 𝑄) = 𝐸) |
| 81 | 77, 79, 80 | 3brtr4d 4685 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 Yrm 0) < (𝐴 Yrm 𝑄)) |
| 82 | | ltrmy 37519 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 0 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (0 < 𝑄 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑄))) |
| 83 | 65, 24, 45, 82 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0 < 𝑄 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑄))) |
| 84 | 81, 83 | mpbird 247 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝑄) |
| 85 | | elnnz 11387 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ ℕ ↔ (𝑄 ∈ ℤ ∧ 0 <
𝑄)) |
| 86 | 45, 84, 85 | sylanbrc 698 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ ℕ) |
| 87 | 3 | nngt0d 11064 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 𝐶) |
| 88 | 1 | eqcomd 2628 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 Yrm 𝑃) = 𝐶) |
| 89 | 87, 79, 88 | 3brtr4d 4685 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 Yrm 0) < (𝐴 Yrm 𝑃)) |
| 90 | | ltrmy 37519 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 0 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (0 < 𝑃 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑃))) |
| 91 | 65, 24, 10, 90 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0 < 𝑃 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑃))) |
| 92 | 89, 91 | mpbird 247 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝑃) |
| 93 | | elnnz 11387 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℕ ↔ (𝑃 ∈ ℤ ∧ 0 <
𝑃)) |
| 94 | 10, 92, 93 | sylanbrc 698 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 95 | | jm2.20nn 37564 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑄 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄) ↔ (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄)) |
| 96 | 65, 86, 94, 95 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄) ↔ (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄)) |
| 97 | 64, 96 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄) |
| 98 | 1, 4 | eqeltrrd 2702 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 Yrm 𝑃) ∈ ℤ) |
| 99 | | muldvds2 15007 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℤ ∧ (𝐴 Yrm 𝑃) ∈ ℤ ∧ 𝑄 ∈ ℤ) → ((𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄 → (𝐴 Yrm 𝑃) ∥ 𝑄)) |
| 100 | 10, 98, 45, 99 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄 → (𝐴 Yrm 𝑃) ∥ 𝑄)) |
| 101 | 97, 100 | mpd 15 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 Yrm 𝑃) ∥ 𝑄) |
| 102 | 1, 101 | eqbrtrd 4675 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∥ 𝑄) |
| 103 | 2 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℤ) |
| 104 | | dvdscmul 15008 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ 2 ∈
ℤ) → (𝐶 ∥
𝑄 → (2 · 𝐶) ∥ (2 · 𝑄))) |
| 105 | 4, 45, 103, 104 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∥ 𝑄 → (2 · 𝐶) ∥ (2 · 𝑄))) |
| 106 | 102, 105 | mpd 15 |
. . . . . 6
⊢ (𝜑 → (2 · 𝐶) ∥ (2 · 𝑄)) |
| 107 | | jm2.27a25 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (𝐴 Xrm 𝑄)) |
| 108 | | jm2.27a6 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈
ℕ0) |
| 109 | 108 | nn0zd 11480 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ ℤ) |
| 110 | 107, 109 | eqeltrrd 2702 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 Xrm 𝑄) ∈ ℤ) |
| 111 | | frmy 37479 |
. . . . . . . . . . 11
⊢
Yrm :((ℤ≥‘2) ×
ℤ)⟶ℤ |
| 112 | 111 | fovcl 6765 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑅 ∈ ℤ) → (𝐴 Yrm 𝑅) ∈ ℤ) |
| 113 | 65, 9, 112 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 Yrm 𝑅) ∈ ℤ) |
| 114 | 21, 12 | eqeltrrd 2702 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 Yrm 𝑅) ∈ ℤ) |
| 115 | | eluzelz 11697 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈
(ℤ≥‘2) → 𝐴 ∈ ℤ) |
| 116 | 65, 115 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 117 | | jm2.27a16 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∥ (𝐺 − 𝐴)) |
| 118 | | congsym 37535 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ ℤ ∧ 𝐺 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝐹 ∥ (𝐺 − 𝐴))) → 𝐹 ∥ (𝐴 − 𝐺)) |
| 119 | 109, 35, 116, 117, 118 | syl22anc 1327 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∥ (𝐴 − 𝐺)) |
| 120 | 107, 119 | eqbrtrrd 4677 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 Xrm 𝑄) ∥ (𝐴 − 𝐺)) |
| 121 | | jm2.15nn0 37570 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2)
∧ 𝑅 ∈
ℕ0) → (𝐴 − 𝐺) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅))) |
| 122 | 65, 17, 29, 121 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 − 𝐺) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅))) |
| 123 | 116, 35 | zsubcld 11487 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 − 𝐺) ∈ ℤ) |
| 124 | 113, 114 | zsubcld 11487 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)) ∈ ℤ) |
| 125 | | dvdstr 15018 |
. . . . . . . . . . 11
⊢ (((𝐴 Xrm 𝑄) ∈ ℤ ∧ (𝐴 − 𝐺) ∈ ℤ ∧ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)) ∈ ℤ) → (((𝐴 Xrm 𝑄) ∥ (𝐴 − 𝐺) ∧ (𝐴 − 𝐺) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅))) → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)))) |
| 126 | 110, 123,
124, 125 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐴 Xrm 𝑄) ∥ (𝐴 − 𝐺) ∧ (𝐴 − 𝐺) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅))) → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)))) |
| 127 | 120, 122,
126 | mp2and 715 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅))) |
| 128 | | jm2.27a18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∥ (𝐻 − 𝐶)) |
| 129 | 21, 1 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐻 − 𝐶) = ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃))) |
| 130 | 128, 107,
129 | 3brtr3d 4684 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃))) |
| 131 | | congtr 37532 |
. . . . . . . . 9
⊢ ((((𝐴 Xrm 𝑄) ∈ ℤ ∧ (𝐴 Yrm 𝑅) ∈ ℤ) ∧ ((𝐺 Yrm 𝑅) ∈ ℤ ∧ (𝐴 Yrm 𝑃) ∈ ℤ) ∧ ((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)) ∧ (𝐴 Xrm 𝑄) ∥ ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃)))) → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃))) |
| 132 | 110, 113,
114, 98, 127, 130, 131 | syl222anc 1342 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃))) |
| 133 | 132 | orcd 407 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃)))) |
| 134 | | jm2.26 37569 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑄 ∈ ℕ) ∧ (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃))) ↔ ((2 · 𝑄) ∥ (𝑅 − 𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃)))) |
| 135 | 65, 86, 9, 10, 134 | syl22anc 1327 |
. . . . . . 7
⊢ (𝜑 → (((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃))) ↔ ((2 · 𝑄) ∥ (𝑅 − 𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃)))) |
| 136 | 133, 135 | mpbid 222 |
. . . . . 6
⊢ (𝜑 → ((2 · 𝑄) ∥ (𝑅 − 𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃))) |
| 137 | | dvdsacongtr 37551 |
. . . . . 6
⊢ ((((2
· 𝑄) ∈ ℤ
∧ 𝑅 ∈ ℤ)
∧ (𝑃 ∈ ℤ
∧ (2 · 𝐶) ∈
ℤ) ∧ ((2 · 𝐶) ∥ (2 · 𝑄) ∧ ((2 · 𝑄) ∥ (𝑅 − 𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃)))) → ((2 · 𝐶) ∥ (𝑅 − 𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃))) |
| 138 | 47, 9, 10, 6, 106, 136, 137 | syl222anc 1342 |
. . . . 5
⊢ (𝜑 → ((2 · 𝐶) ∥ (𝑅 − 𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃))) |
| 139 | | acongtr 37545 |
. . . . 5
⊢ ((((2
· 𝐶) ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ (𝑅 ∈ ℤ
∧ 𝑃 ∈ ℤ)
∧ (((2 · 𝐶)
∥ (𝐵 − 𝑅) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑅)) ∧ ((2 · 𝐶) ∥ (𝑅 − 𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃)))) → ((2 · 𝐶) ∥ (𝐵 − 𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃))) |
| 140 | 6, 8, 9, 10, 44, 138, 139 | syl222anc 1342 |
. . . 4
⊢ (𝜑 → ((2 · 𝐶) ∥ (𝐵 − 𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃))) |
| 141 | 7 | nnnn0d 11351 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈
ℕ0) |
| 142 | 3 | nnnn0d 11351 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈
ℕ0) |
| 143 | | jm2.27a20 |
. . . . . 6
⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| 144 | | elfz2nn0 12431 |
. . . . . 6
⊢ (𝐵 ∈ (0...𝐶) ↔ (𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0
∧ 𝐵 ≤ 𝐶)) |
| 145 | 141, 142,
143, 144 | syl3anbrc 1246 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (0...𝐶)) |
| 146 | 94 | nnnn0d 11351 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
| 147 | | rmygeid 37531 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑃 ∈ ℕ0) → 𝑃 ≤ (𝐴 Yrm 𝑃)) |
| 148 | 65, 146, 147 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ≤ (𝐴 Yrm 𝑃)) |
| 149 | 148, 1 | breqtrrd 4681 |
. . . . . 6
⊢ (𝜑 → 𝑃 ≤ 𝐶) |
| 150 | | elfz2nn0 12431 |
. . . . . 6
⊢ (𝑃 ∈ (0...𝐶) ↔ (𝑃 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0
∧ 𝑃 ≤ 𝐶)) |
| 151 | 146, 142,
149, 150 | syl3anbrc 1246 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ (0...𝐶)) |
| 152 | | acongeq 37550 |
. . . . 5
⊢ ((𝐶 ∈ ℕ ∧ 𝐵 ∈ (0...𝐶) ∧ 𝑃 ∈ (0...𝐶)) → (𝐵 = 𝑃 ↔ ((2 · 𝐶) ∥ (𝐵 − 𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃)))) |
| 153 | 3, 145, 151, 152 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → (𝐵 = 𝑃 ↔ ((2 · 𝐶) ∥ (𝐵 − 𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃)))) |
| 154 | 140, 153 | mpbird 247 |
. . 3
⊢ (𝜑 → 𝐵 = 𝑃) |
| 155 | 154 | oveq2d 6666 |
. 2
⊢ (𝜑 → (𝐴 Yrm 𝐵) = (𝐴 Yrm 𝑃)) |
| 156 | 1, 155 | eqtr4d 2659 |
1
⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝐵)) |