![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin45 | Structured version Visualization version GIF version |
Description: Every IV-finite set is V-finite: if we can pack two copies of the set into itself, we can certainly leave space. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
fin45 | ⊢ (𝐴 ∈ FinIV → 𝐴 ∈ FinV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin4-3 9137 | . . 3 ⊢ (𝐴 ∈ FinIV ↔ 𝐴 ≺ (𝐴 +𝑐 1𝑜)) | |
2 | simpl 473 | . . . . . . . . 9 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴)) → 𝐴 ≠ ∅) | |
3 | relen 7960 | . . . . . . . . . . . 12 ⊢ Rel ≈ | |
4 | 3 | brrelexi 5158 | . . . . . . . . . . 11 ⊢ (𝐴 ≈ (𝐴 +𝑐 𝐴) → 𝐴 ∈ V) |
5 | 4 | adantl 482 | . . . . . . . . . 10 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴)) → 𝐴 ∈ V) |
6 | 0sdomg 8089 | . . . . . . . . . 10 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
7 | 5, 6 | syl 17 | . . . . . . . . 9 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴)) → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
8 | 2, 7 | mpbird 247 | . . . . . . . 8 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴)) → ∅ ≺ 𝐴) |
9 | 0sdom1dom 8158 | . . . . . . . 8 ⊢ (∅ ≺ 𝐴 ↔ 1𝑜 ≼ 𝐴) | |
10 | 8, 9 | sylib 208 | . . . . . . 7 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴)) → 1𝑜 ≼ 𝐴) |
11 | cdadom2 9009 | . . . . . . 7 ⊢ (1𝑜 ≼ 𝐴 → (𝐴 +𝑐 1𝑜) ≼ (𝐴 +𝑐 𝐴)) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴)) → (𝐴 +𝑐 1𝑜) ≼ (𝐴 +𝑐 𝐴)) |
13 | domen2 8103 | . . . . . . 7 ⊢ (𝐴 ≈ (𝐴 +𝑐 𝐴) → ((𝐴 +𝑐 1𝑜) ≼ 𝐴 ↔ (𝐴 +𝑐 1𝑜) ≼ (𝐴 +𝑐 𝐴))) | |
14 | 13 | adantl 482 | . . . . . 6 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴)) → ((𝐴 +𝑐 1𝑜) ≼ 𝐴 ↔ (𝐴 +𝑐 1𝑜) ≼ (𝐴 +𝑐 𝐴))) |
15 | 12, 14 | mpbird 247 | . . . . 5 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴)) → (𝐴 +𝑐 1𝑜) ≼ 𝐴) |
16 | domnsym 8086 | . . . . 5 ⊢ ((𝐴 +𝑐 1𝑜) ≼ 𝐴 → ¬ 𝐴 ≺ (𝐴 +𝑐 1𝑜)) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴)) → ¬ 𝐴 ≺ (𝐴 +𝑐 1𝑜)) |
18 | 17 | con2i 134 | . . 3 ⊢ (𝐴 ≺ (𝐴 +𝑐 1𝑜) → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴))) |
19 | 1, 18 | sylbi 207 | . 2 ⊢ (𝐴 ∈ FinIV → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴))) |
20 | isfin5-2 9213 | . 2 ⊢ (𝐴 ∈ FinIV → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 +𝑐 𝐴)))) | |
21 | 19, 20 | mpbird 247 | 1 ⊢ (𝐴 ∈ FinIV → 𝐴 ∈ FinV) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∅c0 3915 class class class wbr 4653 (class class class)co 6650 1𝑜c1o 7553 ≈ cen 7952 ≼ cdom 7953 ≺ csdm 7954 +𝑐 ccda 8989 FinIVcfin4 9102 FinVcfin5 9104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-cda 8990 df-fin4 9109 df-fin5 9111 |
This theorem is referenced by: fin2so 33396 |
Copyright terms: Public domain | W3C validator |