Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpsuclem Structured version   Visualization version   GIF version

Theorem finxpsuclem 33234
Description: Lemma for finxpsuc 33235. (Contributed by ML, 24-Oct-2020.)
Hypothesis
Ref Expression
finxpsuclem.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpsuclem ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem finxpsuclem
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2 7086 . . . . . . . . . 10 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
21adantr 481 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → suc 𝑁 ∈ ω)
3 1on 7567 . . . . . . . . . . . . 13 1𝑜 ∈ On
43onordi 5832 . . . . . . . . . . . 12 Ord 1𝑜
5 nnord 7073 . . . . . . . . . . . 12 (𝑁 ∈ ω → Ord 𝑁)
6 ordsseleq 5752 . . . . . . . . . . . 12 ((Ord 1𝑜 ∧ Ord 𝑁) → (1𝑜𝑁 ↔ (1𝑜𝑁 ∨ 1𝑜 = 𝑁)))
74, 5, 6sylancr 695 . . . . . . . . . . 11 (𝑁 ∈ ω → (1𝑜𝑁 ↔ (1𝑜𝑁 ∨ 1𝑜 = 𝑁)))
87biimpa 501 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (1𝑜𝑁 ∨ 1𝑜 = 𝑁))
9 elelsuc 5797 . . . . . . . . . . . . 13 (1𝑜𝑁 → 1𝑜 ∈ suc 𝑁)
109a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ω → (1𝑜𝑁 → 1𝑜 ∈ suc 𝑁))
11 sucidg 5803 . . . . . . . . . . . . 13 (𝑁 ∈ ω → 𝑁 ∈ suc 𝑁)
12 eleq1 2689 . . . . . . . . . . . . 13 (1𝑜 = 𝑁 → (1𝑜 ∈ suc 𝑁𝑁 ∈ suc 𝑁))
1311, 12syl5ibrcom 237 . . . . . . . . . . . 12 (𝑁 ∈ ω → (1𝑜 = 𝑁 → 1𝑜 ∈ suc 𝑁))
1410, 13jaod 395 . . . . . . . . . . 11 (𝑁 ∈ ω → ((1𝑜𝑁 ∨ 1𝑜 = 𝑁) → 1𝑜 ∈ suc 𝑁))
1514adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → ((1𝑜𝑁 ∨ 1𝑜 = 𝑁) → 1𝑜 ∈ suc 𝑁))
168, 15mpd 15 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → 1𝑜 ∈ suc 𝑁)
17 finxpsuclem.1 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
1817finxpreclem6 33233 . . . . . . . . 9 ((suc 𝑁 ∈ ω ∧ 1𝑜 ∈ suc 𝑁) → (𝑈↑↑suc 𝑁) ⊆ (V × 𝑈))
192, 16, 18syl2anc 693 . . . . . . . 8 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑈↑↑suc 𝑁) ⊆ (V × 𝑈))
2019sselda 3603 . . . . . . 7 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → 𝑦 ∈ (V × 𝑈))
211ad2antrr 762 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → suc 𝑁 ∈ ω)
22 df-2o 7561 . . . . . . . . . . . . . . 15 2𝑜 = suc 1𝑜
23 ordsucsssuc 7023 . . . . . . . . . . . . . . . . 17 ((Ord 1𝑜 ∧ Ord 𝑁) → (1𝑜𝑁 ↔ suc 1𝑜 ⊆ suc 𝑁))
244, 5, 23sylancr 695 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ω → (1𝑜𝑁 ↔ suc 1𝑜 ⊆ suc 𝑁))
2524biimpa 501 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → suc 1𝑜 ⊆ suc 𝑁)
2622, 25syl5eqss 3649 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → 2𝑜 ⊆ suc 𝑁)
2726adantr 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 2𝑜 ⊆ suc 𝑁)
28 simpr 477 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 𝑦 ∈ (V × 𝑈))
2917finxpreclem4 33231 . . . . . . . . . . . . 13 (((suc 𝑁 ∈ ω ∧ 2𝑜 ⊆ suc 𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁))
3021, 27, 28, 29syl21anc 1325 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁))
31 ordunisuc 7032 . . . . . . . . . . . . . . . 16 (Ord 𝑁 suc 𝑁 = 𝑁)
325, 31syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ω → suc 𝑁 = 𝑁)
33 opeq1 4402 . . . . . . . . . . . . . . . 16 ( suc 𝑁 = 𝑁 → ⟨ suc 𝑁, (1st𝑦)⟩ = ⟨𝑁, (1st𝑦)⟩)
34 rdgeq2 7508 . . . . . . . . . . . . . . . 16 (⟨ suc 𝑁, (1st𝑦)⟩ = ⟨𝑁, (1st𝑦)⟩ → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3533, 34syl 17 . . . . . . . . . . . . . . 15 ( suc 𝑁 = 𝑁 → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3632, 35syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3736, 32fveq12d 6197 . . . . . . . . . . . . 13 (𝑁 ∈ ω → (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
3837ad2antrr 762 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
3930, 38eqtrd 2656 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
4039eqeq2d 2632 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
411biantrurd 529 . . . . . . . . . . . 12 (𝑁 ∈ ω → (∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) ↔ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁))))
4217dffinxpf 33222 . . . . . . . . . . . . 13 (𝑈↑↑suc 𝑁) = {𝑦 ∣ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁))}
4342abeq2i 2735 . . . . . . . . . . . 12 (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
4441, 43syl6rbbr 279 . . . . . . . . . . 11 (𝑁 ∈ ω → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
4544ad2antrr 762 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
46 fvex 6201 . . . . . . . . . . . . 13 (1st𝑦) ∈ V
47 opeq2 4403 . . . . . . . . . . . . . . . . 17 (𝑧 = (1st𝑦) → ⟨𝑁, 𝑧⟩ = ⟨𝑁, (1st𝑦)⟩)
48 rdgeq2 7508 . . . . . . . . . . . . . . . . 17 (⟨𝑁, 𝑧⟩ = ⟨𝑁, (1st𝑦)⟩ → rec(𝐹, ⟨𝑁, 𝑧⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
4947, 48syl 17 . . . . . . . . . . . . . . . 16 (𝑧 = (1st𝑦) → rec(𝐹, ⟨𝑁, 𝑧⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
5049fveq1d 6193 . . . . . . . . . . . . . . 15 (𝑧 = (1st𝑦) → (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
5150eqeq2d 2632 . . . . . . . . . . . . . 14 (𝑧 = (1st𝑦) → (∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5251anbi2d 740 . . . . . . . . . . . . 13 (𝑧 = (1st𝑦) → ((𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))))
5317dffinxpf 33222 . . . . . . . . . . . . 13 (𝑈↑↑𝑁) = {𝑧 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁))}
5446, 52, 53elab2 3354 . . . . . . . . . . . 12 ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5554baib 944 . . . . . . . . . . 11 (𝑁 ∈ ω → ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5655ad2antrr 762 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5740, 45, 563bitr4d 300 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ (1st𝑦) ∈ (𝑈↑↑𝑁)))
5857biimpd 219 . . . . . . . 8 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
5958impancom 456 . . . . . . 7 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → (𝑦 ∈ (V × 𝑈) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
6020, 59mpd 15 . . . . . 6 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → (1st𝑦) ∈ (𝑈↑↑𝑁))
6160ex 450 . . . . 5 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
6220ex 450 . . . . 5 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → 𝑦 ∈ (V × 𝑈)))
6361, 62jcad 555 . . . 4 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈))))
6457exbiri 652 . . . . . 6 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑦 ∈ (V × 𝑈) → ((1st𝑦) ∈ (𝑈↑↑𝑁) → 𝑦 ∈ (𝑈↑↑suc 𝑁))))
6564impd 447 . . . . 5 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → ((𝑦 ∈ (V × 𝑈) ∧ (1st𝑦) ∈ (𝑈↑↑𝑁)) → 𝑦 ∈ (𝑈↑↑suc 𝑁)))
6665ancomsd 470 . . . 4 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 𝑦 ∈ (𝑈↑↑suc 𝑁)))
6763, 66impbid 202 . . 3 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈))))
68 elxp8 33219 . . 3 (𝑦 ∈ ((𝑈↑↑𝑁) × 𝑈) ↔ ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈)))
6967, 68syl6bbr 278 . 2 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ 𝑦 ∈ ((𝑈↑↑𝑁) × 𝑈)))
7069eqrdv 2620 1 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  c0 3915  ifcif 4086  cop 4183   cuni 4436   × cxp 5112  Ord word 5722  suc csuc 5725  cfv 5888  cmpt2 6652  ωcom 7065  1st c1st 7166  reccrdg 7505  1𝑜c1o 7553  2𝑜c2o 7554  ↑↑cfinxp 33220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-finxp 33221
This theorem is referenced by:  finxpsuc  33235
  Copyright terms: Public domain W3C validator