MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfm Structured version   Visualization version   Unicode version

Theorem fmfnfm 21762
Description: A filter finer than an image filter is an image filter of the same function. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b  |-  ( ph  ->  B  e.  ( fBas `  Y ) )
fmfnfm.l  |-  ( ph  ->  L  e.  ( Fil `  X ) )
fmfnfm.f  |-  ( ph  ->  F : Y --> X )
fmfnfm.fm  |-  ( ph  ->  ( ( X  FilMap  F ) `  B ) 
C_  L )
Assertion
Ref Expression
fmfnfm  |-  ( ph  ->  E. f  e.  ( Fil `  Y ) ( B  C_  f  /\  L  =  (
( X  FilMap  F ) `
 f ) ) )
Distinct variable groups:    B, f    f, F    f, L    f, X    f, Y
Allowed substitution hint:    ph( f)

Proof of Theorem fmfnfm
Dummy variables  s 
t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.b . . . . . 6  |-  ( ph  ->  B  e.  ( fBas `  Y ) )
2 fbsspw 21636 . . . . . 6  |-  ( B  e.  ( fBas `  Y
)  ->  B  C_  ~P Y )
31, 2syl 17 . . . . 5  |-  ( ph  ->  B  C_  ~P Y
)
4 elfvdm 6220 . . . . . . . 8  |-  ( B  e.  ( fBas `  Y
)  ->  Y  e.  dom  fBas )
51, 4syl 17 . . . . . . 7  |-  ( ph  ->  Y  e.  dom  fBas )
6 fmfnfm.l . . . . . . 7  |-  ( ph  ->  L  e.  ( Fil `  X ) )
7 fmfnfm.f . . . . . . 7  |-  ( ph  ->  F : Y --> X )
8 fmfnfm.fm . . . . . . . 8  |-  ( ph  ->  ( ( X  FilMap  F ) `  B ) 
C_  L )
9 ffn 6045 . . . . . . . . . . 11  |-  ( F : Y --> X  ->  F  Fn  Y )
10 dffn4 6121 . . . . . . . . . . 11  |-  ( F  Fn  Y  <->  F : Y -onto-> ran  F )
119, 10sylib 208 . . . . . . . . . 10  |-  ( F : Y --> X  ->  F : Y -onto-> ran  F
)
12 foima 6120 . . . . . . . . . 10  |-  ( F : Y -onto-> ran  F  ->  ( F " Y
)  =  ran  F
)
137, 11, 123syl 18 . . . . . . . . 9  |-  ( ph  ->  ( F " Y
)  =  ran  F
)
14 filtop 21659 . . . . . . . . . . 11  |-  ( L  e.  ( Fil `  X
)  ->  X  e.  L )
156, 14syl 17 . . . . . . . . . 10  |-  ( ph  ->  X  e.  L )
16 fgcl 21682 . . . . . . . . . . 11  |-  ( B  e.  ( fBas `  Y
)  ->  ( Y filGen B )  e.  ( Fil `  Y ) )
17 filtop 21659 . . . . . . . . . . 11  |-  ( ( Y filGen B )  e.  ( Fil `  Y
)  ->  Y  e.  ( Y filGen B ) )
181, 16, 173syl 18 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  ( Y
filGen B ) )
19 eqid 2622 . . . . . . . . . . 11  |-  ( Y
filGen B )  =  ( Y filGen B )
2019imaelfm 21755 . . . . . . . . . 10  |-  ( ( ( X  e.  L  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  Y  e.  ( Y filGen B ) )  ->  ( F " Y )  e.  ( ( X  FilMap  F ) `
 B ) )
2115, 1, 7, 18, 20syl31anc 1329 . . . . . . . . 9  |-  ( ph  ->  ( F " Y
)  e.  ( ( X  FilMap  F ) `  B ) )
2213, 21eqeltrrd 2702 . . . . . . . 8  |-  ( ph  ->  ran  F  e.  ( ( X  FilMap  F ) `
 B ) )
238, 22sseldd 3604 . . . . . . 7  |-  ( ph  ->  ran  F  e.  L
)
24 rnelfmlem 21756 . . . . . . 7  |-  ( ( ( Y  e.  dom  fBas  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  ran  ( x  e.  L  |->  ( `' F "
x ) )  e.  ( fBas `  Y
) )
255, 6, 7, 23, 24syl31anc 1329 . . . . . 6  |-  ( ph  ->  ran  ( x  e.  L  |->  ( `' F " x ) )  e.  ( fBas `  Y
) )
26 fbsspw 21636 . . . . . 6  |-  ( ran  ( x  e.  L  |->  ( `' F "
x ) )  e.  ( fBas `  Y
)  ->  ran  ( x  e.  L  |->  ( `' F " x ) )  C_  ~P Y
)
2725, 26syl 17 . . . . 5  |-  ( ph  ->  ran  ( x  e.  L  |->  ( `' F " x ) )  C_  ~P Y )
283, 27unssd 3789 . . . 4  |-  ( ph  ->  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) 
C_  ~P Y )
29 ssun1 3776 . . . . 5  |-  B  C_  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) )
30 fbasne0 21634 . . . . . 6  |-  ( B  e.  ( fBas `  Y
)  ->  B  =/=  (/) )
311, 30syl 17 . . . . 5  |-  ( ph  ->  B  =/=  (/) )
32 ssn0 3976 . . . . 5  |-  ( ( B  C_  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) )  /\  B  =/=  (/) )  -> 
( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  =/=  (/) )
3329, 31, 32sylancr 695 . . . 4  |-  ( ph  ->  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  =/=  (/) )
34 vex 3203 . . . . . . . . 9  |-  t  e. 
_V
35 eqid 2622 . . . . . . . . . 10  |-  ( x  e.  L  |->  ( `' F " x ) )  =  ( x  e.  L  |->  ( `' F " x ) )
3635elrnmpt 5372 . . . . . . . . 9  |-  ( t  e.  _V  ->  (
t  e.  ran  (
x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  t  =  ( `' F " x ) ) )
3734, 36ax-mp 5 . . . . . . . 8  |-  ( t  e.  ran  ( x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  t  =  ( `' F " x ) )
38 0nelfil 21653 . . . . . . . . . . . . . 14  |-  ( L  e.  ( Fil `  X
)  ->  -.  (/)  e.  L
)
396, 38syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  (/)  e.  L )
4039ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  B )  /\  x  e.  L )  ->  -.  (/) 
e.  L )
416adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  s  e.  B )  ->  L  e.  ( Fil `  X
) )
428adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  B )  ->  (
( X  FilMap  F ) `
 B )  C_  L )
4315, 1, 73jca 1242 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( X  e.  L  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X ) )
4443adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  B )  ->  ( X  e.  L  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X ) )
45 ssfg 21676 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( fBas `  Y
)  ->  B  C_  ( Y filGen B ) )
461, 45syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  B  C_  ( Y filGen B ) )
4746sselda 3603 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  B )  ->  s  e.  ( Y filGen B ) )
4819imaelfm 21755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  L  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  s  e.  ( Y filGen B ) )  ->  ( F "
s )  e.  ( ( X  FilMap  F ) `
 B ) )
4944, 47, 48syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  B )  ->  ( F " s )  e.  ( ( X  FilMap  F ) `  B ) )
5042, 49sseldd 3604 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  s  e.  B )  ->  ( F " s )  e.  L )
5141, 50jca 554 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  s  e.  B )  ->  ( L  e.  ( Fil `  X )  /\  ( F " s )  e.  L ) )
52 filin 21658 . . . . . . . . . . . . . . 15  |-  ( ( L  e.  ( Fil `  X )  /\  ( F " s )  e.  L  /\  x  e.  L )  ->  (
( F " s
)  i^i  x )  e.  L )
53523expa 1265 . . . . . . . . . . . . . 14  |-  ( ( ( L  e.  ( Fil `  X )  /\  ( F "
s )  e.  L
)  /\  x  e.  L )  ->  (
( F " s
)  i^i  x )  e.  L )
5451, 53sylan 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  B )  /\  x  e.  L )  ->  (
( F " s
)  i^i  x )  e.  L )
55 eleq1 2689 . . . . . . . . . . . . 13  |-  ( ( ( F " s
)  i^i  x )  =  (/)  ->  ( (
( F " s
)  i^i  x )  e.  L  <->  (/)  e.  L ) )
5654, 55syl5ibcom 235 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  B )  /\  x  e.  L )  ->  (
( ( F "
s )  i^i  x
)  =  (/)  ->  (/)  e.  L
) )
5740, 56mtod 189 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  B )  /\  x  e.  L )  ->  -.  ( ( F "
s )  i^i  x
)  =  (/) )
58 neq0 3930 . . . . . . . . . . . 12  |-  ( -.  ( ( F "
s )  i^i  x
)  =  (/)  <->  E. t 
t  e.  ( ( F " s )  i^i  x ) )
59 elin 3796 . . . . . . . . . . . . . 14  |-  ( t  e.  ( ( F
" s )  i^i  x )  <->  ( t  e.  ( F " s
)  /\  t  e.  x ) )
60 ffun 6048 . . . . . . . . . . . . . . . . . 18  |-  ( F : Y --> X  ->  Fun  F )
61 fvelima 6248 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Fun  F  /\  t  e.  ( F " s
) )  ->  E. y  e.  s  ( F `  y )  =  t )
6261ex 450 . . . . . . . . . . . . . . . . . 18  |-  ( Fun 
F  ->  ( t  e.  ( F " s
)  ->  E. y  e.  s  ( F `  y )  =  t ) )
637, 60, 623syl 18 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( t  e.  ( F " s )  ->  E. y  e.  s  ( F `  y
)  =  t ) )
6463ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  e.  B )  /\  x  e.  L )  ->  (
t  e.  ( F
" s )  ->  E. y  e.  s 
( F `  y
)  =  t ) )
657, 60syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  Fun  F )
6665ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  s  e.  B )  /\  x  e.  L
)  /\  y  e.  s )  ->  Fun  F )
67 fbelss 21637 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( B  e.  ( fBas `  Y )  /\  s  e.  B )  ->  s  C_  Y )
681, 67sylan 488 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  s  e.  B )  ->  s  C_  Y )
69 fdm 6051 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( F : Y --> X  ->  dom  F  =  Y )
707, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  dom  F  =  Y )
7170adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  s  e.  B )  ->  dom  F  =  Y )
7268, 71sseqtr4d 3642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  s  e.  B )  ->  s  C_ 
dom  F )
7372adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  s  e.  B )  /\  x  e.  L )  ->  s  C_ 
dom  F )
7473sselda 3603 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  s  e.  B )  /\  x  e.  L
)  /\  y  e.  s )  ->  y  e.  dom  F )
75 fvimacnv 6332 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( ( F `  y )  e.  x  <->  y  e.  ( `' F " x ) ) )
7666, 74, 75syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  s  e.  B )  /\  x  e.  L
)  /\  y  e.  s )  ->  (
( F `  y
)  e.  x  <->  y  e.  ( `' F " x ) ) )
77 inelcm 4032 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  s  /\  y  e.  ( `' F " x ) )  ->  ( s  i^i  ( `' F "
x ) )  =/=  (/) )
7877ex 450 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  s  ->  (
y  e.  ( `' F " x )  ->  ( s  i^i  ( `' F "
x ) )  =/=  (/) ) )
7978adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  s  e.  B )  /\  x  e.  L
)  /\  y  e.  s )  ->  (
y  e.  ( `' F " x )  ->  ( s  i^i  ( `' F "
x ) )  =/=  (/) ) )
8076, 79sylbid 230 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  s  e.  B )  /\  x  e.  L
)  /\  y  e.  s )  ->  (
( F `  y
)  e.  x  -> 
( s  i^i  ( `' F " x ) )  =/=  (/) ) )
81 eleq1 2689 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  y )  =  t  ->  (
( F `  y
)  e.  x  <->  t  e.  x ) )
8281imbi1d 331 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  y )  =  t  ->  (
( ( F `  y )  e.  x  ->  ( s  i^i  ( `' F " x ) )  =/=  (/) )  <->  ( t  e.  x  ->  ( s  i^i  ( `' F " x ) )  =/=  (/) ) ) )
8380, 82syl5ibcom 235 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  s  e.  B )  /\  x  e.  L
)  /\  y  e.  s )  ->  (
( F `  y
)  =  t  -> 
( t  e.  x  ->  ( s  i^i  ( `' F " x ) )  =/=  (/) ) ) )
8483rexlimdva 3031 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  s  e.  B )  /\  x  e.  L )  ->  ( E. y  e.  s 
( F `  y
)  =  t  -> 
( t  e.  x  ->  ( s  i^i  ( `' F " x ) )  =/=  (/) ) ) )
8564, 84syld 47 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  s  e.  B )  /\  x  e.  L )  ->  (
t  e.  ( F
" s )  -> 
( t  e.  x  ->  ( s  i^i  ( `' F " x ) )  =/=  (/) ) ) )
8685impd 447 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  s  e.  B )  /\  x  e.  L )  ->  (
( t  e.  ( F " s )  /\  t  e.  x
)  ->  ( s  i^i  ( `' F "
x ) )  =/=  (/) ) )
8759, 86syl5bi 232 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  s  e.  B )  /\  x  e.  L )  ->  (
t  e.  ( ( F " s )  i^i  x )  -> 
( s  i^i  ( `' F " x ) )  =/=  (/) ) )
8887exlimdv 1861 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  s  e.  B )  /\  x  e.  L )  ->  ( E. t  t  e.  ( ( F "
s )  i^i  x
)  ->  ( s  i^i  ( `' F "
x ) )  =/=  (/) ) )
8958, 88syl5bi 232 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  B )  /\  x  e.  L )  ->  ( -.  ( ( F "
s )  i^i  x
)  =  (/)  ->  (
s  i^i  ( `' F " x ) )  =/=  (/) ) )
9057, 89mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  B )  /\  x  e.  L )  ->  (
s  i^i  ( `' F " x ) )  =/=  (/) )
91 ineq2 3808 . . . . . . . . . . 11  |-  ( t  =  ( `' F " x )  ->  (
s  i^i  t )  =  ( s  i^i  ( `' F "
x ) ) )
9291neeq1d 2853 . . . . . . . . . 10  |-  ( t  =  ( `' F " x )  ->  (
( s  i^i  t
)  =/=  (/)  <->  ( s  i^i  ( `' F "
x ) )  =/=  (/) ) )
9390, 92syl5ibrcom 237 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  B )  /\  x  e.  L )  ->  (
t  =  ( `' F " x )  ->  ( s  i^i  t )  =/=  (/) ) )
9493rexlimdva 3031 . . . . . . . 8  |-  ( (
ph  /\  s  e.  B )  ->  ( E. x  e.  L  t  =  ( `' F " x )  -> 
( s  i^i  t
)  =/=  (/) ) )
9537, 94syl5bi 232 . . . . . . 7  |-  ( (
ph  /\  s  e.  B )  ->  (
t  e.  ran  (
x  e.  L  |->  ( `' F " x ) )  ->  ( s  i^i  t )  =/=  (/) ) )
9695expimpd 629 . . . . . 6  |-  ( ph  ->  ( ( s  e.  B  /\  t  e. 
ran  ( x  e.  L  |->  ( `' F " x ) ) )  ->  ( s  i^i  t )  =/=  (/) ) )
9796ralrimivv 2970 . . . . 5  |-  ( ph  ->  A. s  e.  B  A. t  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ( s  i^i  t )  =/=  (/) )
98 fbunfip 21673 . . . . . 6  |-  ( ( B  e.  ( fBas `  Y )  /\  ran  ( x  e.  L  |->  ( `' F "
x ) )  e.  ( fBas `  Y
) )  ->  ( -.  (/)  e.  ( fi
`  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) )  <->  A. s  e.  B  A. t  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ( s  i^i  t )  =/=  (/) ) )
991, 25, 98syl2anc 693 . . . . 5  |-  ( ph  ->  ( -.  (/)  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )  <->  A. s  e.  B  A. t  e.  ran  ( x  e.  L  |->  ( `' F " x ) ) ( s  i^i  t )  =/=  (/) ) )
10097, 99mpbird 247 . . . 4  |-  ( ph  ->  -.  (/)  e.  ( fi
`  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )
101 fsubbas 21671 . . . . 5  |-  ( Y  e.  dom  fBas  ->  ( ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )  e.  ( fBas `  Y
)  <->  ( ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) )  C_  ~P Y  /\  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ) ) )
1021, 4, 1013syl 18 . . . 4  |-  ( ph  ->  ( ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) )  e.  ( fBas `  Y )  <->  ( ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) )  C_  ~P Y  /\  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ) ) )
10328, 33, 100, 102mpbir3and 1245 . . 3  |-  ( ph  ->  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )  e.  ( fBas `  Y
) )
104 fgcl 21682 . . 3  |-  ( ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )  e.  ( fBas `  Y
)  ->  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) )  e.  ( Fil `  Y
) )
105103, 104syl 17 . 2  |-  ( ph  ->  ( Y filGen ( fi
`  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )  e.  ( Fil `  Y ) )
106 unexg 6959 . . . . . 6  |-  ( ( B  e.  ( fBas `  Y )  /\  ran  ( x  e.  L  |->  ( `' F "
x ) )  e.  ( fBas `  Y
) )  ->  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) )  e.  _V )
1071, 25, 106syl2anc 693 . . . . 5  |-  ( ph  ->  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  e.  _V )
108 ssfii 8325 . . . . 5  |-  ( ( B  u.  ran  (
x  e.  L  |->  ( `' F " x ) ) )  e.  _V  ->  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) 
C_  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )
109107, 108syl 17 . . . 4  |-  ( ph  ->  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) 
C_  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )
110109unssad 3790 . . 3  |-  ( ph  ->  B  C_  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )
111 ssfg 21676 . . . 4  |-  ( ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )  e.  ( fBas `  Y
)  ->  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) )  C_  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ) )
112103, 111syl 17 . . 3  |-  ( ph  ->  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )  C_  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) ) )
113110, 112sstrd 3613 . 2  |-  ( ph  ->  B  C_  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ) )
1141, 6, 7, 8fmfnfmlem4 21761 . . . . 5  |-  ( ph  ->  ( t  e.  L  <->  ( t  C_  X  /\  E. s  e.  ( fi
`  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) ( F "
s )  C_  t
) ) )
115 elfm 21751 . . . . . 6  |-  ( ( X  e.  L  /\  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )  e.  ( fBas `  Y
)  /\  F : Y
--> X )  ->  (
t  e.  ( ( X  FilMap  F ) `  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) )  <-> 
( t  C_  X  /\  E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t ) ) )
11615, 103, 7, 115syl3anc 1326 . . . . 5  |-  ( ph  ->  ( t  e.  ( ( X  FilMap  F ) `
 ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )  <->  ( t  C_  X  /\  E. s  e.  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ( F " s ) 
C_  t ) ) )
117114, 116bitr4d 271 . . . 4  |-  ( ph  ->  ( t  e.  L  <->  t  e.  ( ( X 
FilMap  F ) `  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) ) ) )
118117eqrdv 2620 . . 3  |-  ( ph  ->  L  =  ( ( X  FilMap  F ) `  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ) )
119 eqid 2622 . . . . 5  |-  ( Y
filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) )  =  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) )
120119fmfg 21753 . . . 4  |-  ( ( X  e.  L  /\  ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) )  e.  ( fBas `  Y
)  /\  F : Y
--> X )  ->  (
( X  FilMap  F ) `
 ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )  =  ( ( X  FilMap  F ) `
 ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ) ) )
12115, 103, 7, 120syl3anc 1326 . . 3  |-  ( ph  ->  ( ( X  FilMap  F ) `  ( fi
`  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )  =  ( ( X  FilMap  F ) `
 ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ) ) )
122118, 121eqtrd 2656 . 2  |-  ( ph  ->  L  =  ( ( X  FilMap  F ) `  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) ) ) )
123 sseq2 3627 . . . 4  |-  ( f  =  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) )  ->  ( B  C_  f 
<->  B  C_  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) ) ) )
124 fveq2 6191 . . . . 5  |-  ( f  =  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) )  ->  ( ( X 
FilMap  F ) `  f
)  =  ( ( X  FilMap  F ) `  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) ) ) )
125124eqeq2d 2632 . . . 4  |-  ( f  =  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) )  ->  ( L  =  ( ( X  FilMap  F ) `  f )  <-> 
L  =  ( ( X  FilMap  F ) `  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) ) ) ) )
126123, 125anbi12d 747 . . 3  |-  ( f  =  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F " x ) ) ) ) )  ->  ( ( B 
C_  f  /\  L  =  ( ( X 
FilMap  F ) `  f
) )  <->  ( B  C_  ( Y filGen ( fi
`  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )  /\  L  =  ( ( X 
FilMap  F ) `  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) ) ) ) ) )
127126rspcev 3309 . 2  |-  ( ( ( Y filGen ( fi
`  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )  e.  ( Fil `  Y )  /\  ( B  C_  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) )  /\  L  =  ( ( X 
FilMap  F ) `  ( Y filGen ( fi `  ( B  u.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) ) ) ) ) )  ->  E. f  e.  ( Fil `  Y
) ( B  C_  f  /\  L  =  ( ( X  FilMap  F ) `
 f ) ) )
128105, 113, 122, 127syl12anc 1324 1  |-  ( ph  ->  E. f  e.  ( Fil `  Y ) ( B  C_  f  /\  L  =  (
( X  FilMap  F ) `
 f ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   ficfi 8316   fBascfbas 19734   filGencfg 19735   Filcfil 21649    FilMap cfm 21737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-fbas 19743  df-fg 19744  df-fil 21650  df-fm 21742
This theorem is referenced by:  fmufil  21763  cnpfcf  21845
  Copyright terms: Public domain W3C validator