| Step | Hyp | Ref
| Expression |
| 1 | | stoweidlem31.14 |
. . 3
⊢ (𝜑 → ran 𝐺 ∈ Fin) |
| 2 | | fnchoice 39188 |
. . 3
⊢ (ran
𝐺 ∈ Fin →
∃𝑙(𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) |
| 3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑙(𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) |
| 4 | | vex 3203 |
. . . . 5
⊢ 𝑙 ∈ V |
| 5 | | stoweidlem31.6 |
. . . . . . 7
⊢ 𝐺 = (𝑤 ∈ 𝑅 ↦ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 6 | | stoweidlem31.12 |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ∈ V) |
| 7 | | stoweidlem31.7 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ⊆ 𝑉) |
| 8 | 6, 7 | ssexd 4805 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ V) |
| 9 | | mptexg 6484 |
. . . . . . . 8
⊢ (𝑅 ∈ V → (𝑤 ∈ 𝑅 ↦ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) ∈ V) |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ 𝑅 ↦ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) ∈ V) |
| 11 | 5, 10 | syl5eqel 2705 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ V) |
| 12 | | vex 3203 |
. . . . . 6
⊢ 𝑣 ∈ V |
| 13 | | coexg 7117 |
. . . . . 6
⊢ ((𝐺 ∈ V ∧ 𝑣 ∈ V) → (𝐺 ∘ 𝑣) ∈ V) |
| 14 | 11, 12, 13 | sylancl 694 |
. . . . 5
⊢ (𝜑 → (𝐺 ∘ 𝑣) ∈ V) |
| 15 | | coexg 7117 |
. . . . 5
⊢ ((𝑙 ∈ V ∧ (𝐺 ∘ 𝑣) ∈ V) → (𝑙 ∘ (𝐺 ∘ 𝑣)) ∈ V) |
| 16 | 4, 14, 15 | sylancr 695 |
. . . 4
⊢ (𝜑 → (𝑙 ∘ (𝐺 ∘ 𝑣)) ∈ V) |
| 17 | 16 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → (𝑙 ∘ (𝐺 ∘ 𝑣)) ∈ V) |
| 18 | | simprl 794 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → 𝑙 Fn ran 𝐺) |
| 19 | | stoweidlem31.1 |
. . . . . . . . 9
⊢
Ⅎℎ𝜑 |
| 20 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎℎ𝑙 |
| 21 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎℎ𝑅 |
| 22 | | nfrab1 3122 |
. . . . . . . . . . . . . 14
⊢
Ⅎℎ{ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} |
| 23 | 21, 22 | nfmpt 4746 |
. . . . . . . . . . . . 13
⊢
Ⅎℎ(𝑤 ∈ 𝑅 ↦ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 24 | 5, 23 | nfcxfr 2762 |
. . . . . . . . . . . 12
⊢
Ⅎℎ𝐺 |
| 25 | 24 | nfrn 5368 |
. . . . . . . . . . 11
⊢
Ⅎℎran
𝐺 |
| 26 | 20, 25 | nffn 5987 |
. . . . . . . . . 10
⊢
Ⅎℎ 𝑙 Fn ran 𝐺 |
| 27 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎℎ(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) |
| 28 | 25, 27 | nfral 2945 |
. . . . . . . . . 10
⊢
Ⅎℎ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) |
| 29 | 26, 28 | nfan 1828 |
. . . . . . . . 9
⊢
Ⅎℎ(𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏)) |
| 30 | 19, 29 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎℎ(𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) |
| 31 | | fvelrnb 6243 |
. . . . . . . . . . . . 13
⊢ (𝑙 Fn ran 𝐺 → (ℎ ∈ ran 𝑙 ↔ ∃𝑏 ∈ ran 𝐺(𝑙‘𝑏) = ℎ)) |
| 32 | 18, 31 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → (ℎ ∈ ran 𝑙 ↔ ∃𝑏 ∈ ran 𝐺(𝑙‘𝑏) = ℎ)) |
| 33 | 32 | biimpa 501 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → ∃𝑏 ∈ ran 𝐺(𝑙‘𝑏) = ℎ) |
| 34 | | nfv 1843 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏𝜑 |
| 35 | | nfv 1843 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏 𝑙 Fn ran 𝐺 |
| 36 | | nfra1 2941 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) |
| 37 | 35, 36 | nfan 1828 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏(𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏)) |
| 38 | 34, 37 | nfan 1828 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) |
| 39 | | nfv 1843 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏 ℎ ∈ ran 𝑙 |
| 40 | 38, 39 | nfan 1828 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) |
| 41 | | simp3 1063 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) ∧ 𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) = ℎ) → (𝑙‘𝑏) = ℎ) |
| 42 | | simp1ll 1124 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) ∧ 𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) = ℎ) → 𝜑) |
| 43 | | simplrr 801 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏)) |
| 44 | 43 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) ∧ 𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) = ℎ) → ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏)) |
| 45 | | simp2 1062 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) ∧ 𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) = ℎ) → 𝑏 ∈ ran 𝐺) |
| 46 | | simp3 1063 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → 𝑏 ∈ ran 𝐺) |
| 47 | | 3simpc 1060 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → (∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺)) |
| 48 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑏 ∈ ran 𝐺) → 𝑏 ∈ ran 𝐺) |
| 49 | | stoweidlem31.3 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑤𝜑 |
| 50 | | stoweidlem31.13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐴 ∈ V) |
| 51 | | rabexg 4812 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐴 ∈ V → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) |
| 53 | 52 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑤 ∈ 𝑅 → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V)) |
| 54 | 49, 53 | ralrimi 2957 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ∀𝑤 ∈ 𝑅 {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) |
| 55 | 5 | fnmpt 6020 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑤 ∈
𝑅 {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V → 𝐺 Fn 𝑅) |
| 56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐺 Fn 𝑅) |
| 57 | 56 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑏 ∈ ran 𝐺) → 𝐺 Fn 𝑅) |
| 58 | | fvelrnb 6243 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺 Fn 𝑅 → (𝑏 ∈ ran 𝐺 ↔ ∃𝑢 ∈ 𝑅 (𝐺‘𝑢) = 𝑏)) |
| 59 | | nfmpt1 4747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑤(𝑤 ∈ 𝑅 ↦ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 60 | 5, 59 | nfcxfr 2762 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑤𝐺 |
| 61 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑤𝑢 |
| 62 | 60, 61 | nffv 6198 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑤(𝐺‘𝑢) |
| 63 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑤𝑏 |
| 64 | 62, 63 | nfeq 2776 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑤(𝐺‘𝑢) = 𝑏 |
| 65 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑢(𝐺‘𝑤) = 𝑏 |
| 66 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑢 = 𝑤 → (𝐺‘𝑢) = (𝐺‘𝑤)) |
| 67 | 66 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 = 𝑤 → ((𝐺‘𝑢) = 𝑏 ↔ (𝐺‘𝑤) = 𝑏)) |
| 68 | 64, 65, 67 | cbvrex 3168 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∃𝑢 ∈
𝑅 (𝐺‘𝑢) = 𝑏 ↔ ∃𝑤 ∈ 𝑅 (𝐺‘𝑤) = 𝑏) |
| 69 | 58, 68 | syl6bb 276 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐺 Fn 𝑅 → (𝑏 ∈ ran 𝐺 ↔ ∃𝑤 ∈ 𝑅 (𝐺‘𝑤) = 𝑏)) |
| 70 | 57, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑏 ∈ ran 𝐺) → (𝑏 ∈ ran 𝐺 ↔ ∃𝑤 ∈ 𝑅 (𝐺‘𝑤) = 𝑏)) |
| 71 | 48, 70 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑏 ∈ ran 𝐺) → ∃𝑤 ∈ 𝑅 (𝐺‘𝑤) = 𝑏) |
| 72 | 60 | nfrn 5368 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑤ran
𝐺 |
| 73 | 72 | nfcri 2758 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑤 𝑏 ∈ ran 𝐺 |
| 74 | 49, 73 | nfan 1828 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑤(𝜑 ∧ 𝑏 ∈ ran 𝐺) |
| 75 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑤 𝑏 ≠ ∅ |
| 76 | | simp3 1063 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅 ∧ (𝐺‘𝑤) = 𝑏) → (𝐺‘𝑤) = 𝑏) |
| 77 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → 𝑤 ∈ 𝑅) |
| 78 | 50 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → 𝐴 ∈ V) |
| 79 | 78, 51 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) |
| 80 | 5 | fvmpt2 6291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑤 ∈ 𝑅 ∧ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) → (𝐺‘𝑤) = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 81 | 77, 79, 80 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → (𝐺‘𝑤) = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 82 | 7 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → 𝑤 ∈ 𝑉) |
| 83 | | stoweidlem31.5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 𝑉 = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} |
| 84 | 83 | rabeq2i 3197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 ∈ 𝑉 ↔ (𝑤 ∈ 𝐽 ∧ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡)))) |
| 85 | 82, 84 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → (𝑤 ∈ 𝐽 ∧ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡)))) |
| 86 | 85 | simprd 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))) |
| 87 | | stoweidlem31.10 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 88 | | stoweidlem31.8 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 89 | 88 | nnrpd 11870 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝑀 ∈
ℝ+) |
| 90 | 87, 89 | rpdivcld 11889 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (𝐸 / 𝑀) ∈
ℝ+) |
| 91 | 90 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → (𝐸 / 𝑀) ∈
ℝ+) |
| 92 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑒 = (𝐸 / 𝑀) → ((ℎ‘𝑡) < 𝑒 ↔ (ℎ‘𝑡) < (𝐸 / 𝑀))) |
| 93 | 92 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑒 = (𝐸 / 𝑀) → (∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ↔ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀))) |
| 94 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑒 = (𝐸 / 𝑀) → (1 − 𝑒) = (1 − (𝐸 / 𝑀))) |
| 95 | 94 | breq1d 4663 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑒 = (𝐸 / 𝑀) → ((1 − 𝑒) < (ℎ‘𝑡) ↔ (1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))) |
| 96 | 95 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑒 = (𝐸 / 𝑀) → (∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡) ↔ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))) |
| 97 | 93, 96 | 3anbi23d 1402 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑒 = (𝐸 / 𝑀) → ((∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)))) |
| 98 | 97 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑒 = (𝐸 / 𝑀) → (∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡)) ↔ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)))) |
| 99 | 98 | rspccva 3308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((∀𝑒 ∈
ℝ+ ∃ℎ
∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡)) ∧ (𝐸 / 𝑀) ∈ ℝ+) →
∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))) |
| 100 | 86, 91, 99 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))) |
| 101 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
Ⅎℎ 𝑤 ∈ 𝑅 |
| 102 | 19, 101 | nfan 1828 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎℎ(𝜑 ∧ 𝑤 ∈ 𝑅) |
| 103 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
Ⅎℎ∅ |
| 104 | 22, 103 | nfne 2894 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎℎ{ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ≠ ∅ |
| 105 | | 3simpc 1060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑅) ∧ ℎ ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))) → (ℎ ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)))) |
| 106 | | rabid 3116 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (ℎ ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ↔ (ℎ ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)))) |
| 107 | 105, 106 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑅) ∧ ℎ ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))) → ℎ ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 108 | | ne0i 3921 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (ℎ ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ≠ ∅) |
| 109 | 107, 108 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑅) ∧ ℎ ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))) → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ≠ ∅) |
| 110 | 109 | 3exp 1264 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → (ℎ ∈ 𝐴 → ((∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)) → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ≠ ∅))) |
| 111 | 102, 104,
110 | rexlimd 3026 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → (∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)) → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ≠ ∅)) |
| 112 | 100, 111 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ≠ ∅) |
| 113 | 81, 112 | eqnetrd 2861 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅) → (𝐺‘𝑤) ≠ ∅) |
| 114 | 113 | 3adant3 1081 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅 ∧ (𝐺‘𝑤) = 𝑏) → (𝐺‘𝑤) ≠ ∅) |
| 115 | 76, 114 | eqnetrrd 2862 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑅 ∧ (𝐺‘𝑤) = 𝑏) → 𝑏 ≠ ∅) |
| 116 | 115 | 3adant1r 1319 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑏 ∈ ran 𝐺) ∧ 𝑤 ∈ 𝑅 ∧ (𝐺‘𝑤) = 𝑏) → 𝑏 ≠ ∅) |
| 117 | 116 | 3exp 1264 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑏 ∈ ran 𝐺) → (𝑤 ∈ 𝑅 → ((𝐺‘𝑤) = 𝑏 → 𝑏 ≠ ∅))) |
| 118 | 74, 75, 117 | rexlimd 3026 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑏 ∈ ran 𝐺) → (∃𝑤 ∈ 𝑅 (𝐺‘𝑤) = 𝑏 → 𝑏 ≠ ∅)) |
| 119 | 71, 118 | mpd 15 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑏 ∈ ran 𝐺) → 𝑏 ≠ ∅) |
| 120 | 119 | 3adant2 1080 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → 𝑏 ≠ ∅) |
| 121 | | rspa 2930 |
. . . . . . . . . . . . . . . . . 18
⊢
((∀𝑏 ∈
ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → (𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏)) |
| 122 | 47, 120, 121 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → (𝑙‘𝑏) ∈ 𝑏) |
| 123 | 46, 122 | jca 554 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → (𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) ∈ 𝑏)) |
| 124 | | vex 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑏 ∈ V |
| 125 | 5 | elrnmpt 5372 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ V → (𝑏 ∈ ran 𝐺 ↔ ∃𝑤 ∈ 𝑅 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))})) |
| 126 | 124, 125 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ ran 𝐺 ↔ ∃𝑤 ∈ 𝑅 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 127 | 46, 126 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → ∃𝑤 ∈ 𝑅 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 128 | | nfv 1843 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑤(𝑙‘𝑏) ∈ 𝑏 |
| 129 | 73, 128 | nfan 1828 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑤(𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) ∈ 𝑏) |
| 130 | | nfv 1843 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑤(𝑙‘𝑏) ∈ 𝑌 |
| 131 | | simp1r 1086 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑤 ∈ 𝑅 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → (𝑙‘𝑏) ∈ 𝑏) |
| 132 | | simp3 1063 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑤 ∈ 𝑅 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 133 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑙‘𝑏) ∈ 𝑏 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → (𝑙‘𝑏) ∈ 𝑏) |
| 134 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑙‘𝑏) ∈ 𝑏 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 135 | 133, 134 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑙‘𝑏) ∈ 𝑏 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → (𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 136 | | elrabi 3359 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → (𝑙‘𝑏) ∈ 𝐴) |
| 137 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (ℎ = (𝑙‘𝑏) → (ℎ‘𝑡) = ((𝑙‘𝑏)‘𝑡)) |
| 138 | 137 | breq2d 4665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (ℎ = (𝑙‘𝑏) → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ ((𝑙‘𝑏)‘𝑡))) |
| 139 | 137 | breq1d 4663 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (ℎ = (𝑙‘𝑏) → ((ℎ‘𝑡) ≤ 1 ↔ ((𝑙‘𝑏)‘𝑡) ≤ 1)) |
| 140 | 138, 139 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (ℎ = (𝑙‘𝑏) → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ ((𝑙‘𝑏)‘𝑡) ∧ ((𝑙‘𝑏)‘𝑡) ≤ 1))) |
| 141 | 140 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (ℎ = (𝑙‘𝑏) → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑙‘𝑏)‘𝑡) ∧ ((𝑙‘𝑏)‘𝑡) ≤ 1))) |
| 142 | 137 | breq1d 4663 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (ℎ = (𝑙‘𝑏) → ((ℎ‘𝑡) < (𝐸 / 𝑀) ↔ ((𝑙‘𝑏)‘𝑡) < (𝐸 / 𝑀))) |
| 143 | 142 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (ℎ = (𝑙‘𝑏) → (∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ↔ ∀𝑡 ∈ 𝑤 ((𝑙‘𝑏)‘𝑡) < (𝐸 / 𝑀))) |
| 144 | 137 | breq2d 4665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (ℎ = (𝑙‘𝑏) → ((1 − (𝐸 / 𝑀)) < (ℎ‘𝑡) ↔ (1 − (𝐸 / 𝑀)) < ((𝑙‘𝑏)‘𝑡))) |
| 145 | 144 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (ℎ = (𝑙‘𝑏) → (∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡) ↔ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < ((𝑙‘𝑏)‘𝑡))) |
| 146 | 141, 143,
145 | 3anbi123d 1399 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ = (𝑙‘𝑏) → ((∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ ((𝑙‘𝑏)‘𝑡) ∧ ((𝑙‘𝑏)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 ((𝑙‘𝑏)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < ((𝑙‘𝑏)‘𝑡)))) |
| 147 | 146 | elrab 3363 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ↔ ((𝑙‘𝑏) ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ ((𝑙‘𝑏)‘𝑡) ∧ ((𝑙‘𝑏)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 ((𝑙‘𝑏)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < ((𝑙‘𝑏)‘𝑡)))) |
| 148 | 147 | simprbi 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → (∀𝑡 ∈ 𝑇 (0 ≤ ((𝑙‘𝑏)‘𝑡) ∧ ((𝑙‘𝑏)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 ((𝑙‘𝑏)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < ((𝑙‘𝑏)‘𝑡))) |
| 149 | 148 | simp1d 1073 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑙‘𝑏)‘𝑡) ∧ ((𝑙‘𝑏)‘𝑡) ≤ 1)) |
| 150 | 141 | elrab 3363 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} ↔ ((𝑙‘𝑏) ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑙‘𝑏)‘𝑡) ∧ ((𝑙‘𝑏)‘𝑡) ≤ 1))) |
| 151 | 136, 149,
150 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → (𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)}) |
| 152 | 135, 151 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑙‘𝑏) ∈ 𝑏 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → (𝑙‘𝑏) ∈ {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)}) |
| 153 | | stoweidlem31.4 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} |
| 154 | 152, 153 | syl6eleqr 2712 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑙‘𝑏) ∈ 𝑏 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → (𝑙‘𝑏) ∈ 𝑌) |
| 155 | 131, 132,
154 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑤 ∈ 𝑅 ∧ 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) → (𝑙‘𝑏) ∈ 𝑌) |
| 156 | 155 | 3exp 1264 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) ∈ 𝑏) → (𝑤 ∈ 𝑅 → (𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → (𝑙‘𝑏) ∈ 𝑌))) |
| 157 | 129, 130,
156 | rexlimd 3026 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) ∈ 𝑏) → (∃𝑤 ∈ 𝑅 𝑏 = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → (𝑙‘𝑏) ∈ 𝑌)) |
| 158 | 123, 127,
157 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → (𝑙‘𝑏) ∈ 𝑌) |
| 159 | 42, 44, 45, 158 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) ∧ 𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) = ℎ) → (𝑙‘𝑏) ∈ 𝑌) |
| 160 | 41, 159 | eqeltrrd 2702 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) ∧ 𝑏 ∈ ran 𝐺 ∧ (𝑙‘𝑏) = ℎ) → ℎ ∈ 𝑌) |
| 161 | 160 | 3exp 1264 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → (𝑏 ∈ ran 𝐺 → ((𝑙‘𝑏) = ℎ → ℎ ∈ 𝑌))) |
| 162 | 40, 161 | reximdai 3012 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → (∃𝑏 ∈ ran 𝐺(𝑙‘𝑏) = ℎ → ∃𝑏 ∈ ran 𝐺 ℎ ∈ 𝑌)) |
| 163 | 33, 162 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → ∃𝑏 ∈ ran 𝐺 ℎ ∈ 𝑌) |
| 164 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏 ℎ ∈ 𝑌 |
| 165 | | idd 24 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ ran 𝐺 → (ℎ ∈ 𝑌 → ℎ ∈ 𝑌)) |
| 166 | 165 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → (𝑏 ∈ ran 𝐺 → (ℎ ∈ 𝑌 → ℎ ∈ 𝑌))) |
| 167 | 40, 164, 166 | rexlimd 3026 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → (∃𝑏 ∈ ran 𝐺 ℎ ∈ 𝑌 → ℎ ∈ 𝑌)) |
| 168 | 163, 167 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ ℎ ∈ ran 𝑙) → ℎ ∈ 𝑌) |
| 169 | 168 | ex 450 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → (ℎ ∈ ran 𝑙 → ℎ ∈ 𝑌)) |
| 170 | 30, 169 | ralrimi 2957 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → ∀ℎ ∈ ran 𝑙 ℎ ∈ 𝑌) |
| 171 | | dfss3 3592 |
. . . . . . . 8
⊢ (ran
𝑙 ⊆ 𝑌 ↔ ∀𝑧 ∈ ran 𝑙 𝑧 ∈ 𝑌) |
| 172 | | nfrab1 3122 |
. . . . . . . . . . 11
⊢
Ⅎℎ{ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} |
| 173 | 153, 172 | nfcxfr 2762 |
. . . . . . . . . 10
⊢
Ⅎℎ𝑌 |
| 174 | 173 | nfcri 2758 |
. . . . . . . . 9
⊢
Ⅎℎ 𝑧 ∈ 𝑌 |
| 175 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑧 ℎ ∈ 𝑌 |
| 176 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑧 = ℎ → (𝑧 ∈ 𝑌 ↔ ℎ ∈ 𝑌)) |
| 177 | 174, 175,
176 | cbvral 3167 |
. . . . . . . 8
⊢
(∀𝑧 ∈
ran 𝑙 𝑧 ∈ 𝑌 ↔ ∀ℎ ∈ ran 𝑙 ℎ ∈ 𝑌) |
| 178 | 171, 177 | bitri 264 |
. . . . . . 7
⊢ (ran
𝑙 ⊆ 𝑌 ↔ ∀ℎ ∈ ran 𝑙 ℎ ∈ 𝑌) |
| 179 | 170, 178 | sylibr 224 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → ran 𝑙 ⊆ 𝑌) |
| 180 | | df-f 5892 |
. . . . . 6
⊢ (𝑙:ran 𝐺⟶𝑌 ↔ (𝑙 Fn ran 𝐺 ∧ ran 𝑙 ⊆ 𝑌)) |
| 181 | 18, 179, 180 | sylanbrc 698 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → 𝑙:ran 𝐺⟶𝑌) |
| 182 | | dffn3 6054 |
. . . . . . . 8
⊢ (𝐺 Fn 𝑅 ↔ 𝐺:𝑅⟶ran 𝐺) |
| 183 | 56, 182 | sylib 208 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝑅⟶ran 𝐺) |
| 184 | 183 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → 𝐺:𝑅⟶ran 𝐺) |
| 185 | | stoweidlem31.9 |
. . . . . . . 8
⊢ (𝜑 → 𝑣:(1...𝑀)–1-1-onto→𝑅) |
| 186 | | f1of 6137 |
. . . . . . . 8
⊢ (𝑣:(1...𝑀)–1-1-onto→𝑅 → 𝑣:(1...𝑀)⟶𝑅) |
| 187 | 185, 186 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑣:(1...𝑀)⟶𝑅) |
| 188 | 187 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → 𝑣:(1...𝑀)⟶𝑅) |
| 189 | | fco 6058 |
. . . . . 6
⊢ ((𝐺:𝑅⟶ran 𝐺 ∧ 𝑣:(1...𝑀)⟶𝑅) → (𝐺 ∘ 𝑣):(1...𝑀)⟶ran 𝐺) |
| 190 | 184, 188,
189 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → (𝐺 ∘ 𝑣):(1...𝑀)⟶ran 𝐺) |
| 191 | | fco 6058 |
. . . . 5
⊢ ((𝑙:ran 𝐺⟶𝑌 ∧ (𝐺 ∘ 𝑣):(1...𝑀)⟶ran 𝐺) → (𝑙 ∘ (𝐺 ∘ 𝑣)):(1...𝑀)⟶𝑌) |
| 192 | 181, 190,
191 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → (𝑙 ∘ (𝐺 ∘ 𝑣)):(1...𝑀)⟶𝑌) |
| 193 | | fvco3 6275 |
. . . . . . . . 9
⊢ (((𝐺 ∘ 𝑣):(1...𝑀)⟶ran 𝐺 ∧ 𝑖 ∈ (1...𝑀)) → ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) = (𝑙‘((𝐺 ∘ 𝑣)‘𝑖))) |
| 194 | 190, 193 | sylan 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) = (𝑙‘((𝐺 ∘ 𝑣)‘𝑖))) |
| 195 | | simpll 790 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → 𝜑) |
| 196 | | simplrr 801 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏)) |
| 197 | 190 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) |
| 198 | | simp3 1063 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) → ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) |
| 199 | | nfv 1843 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺 |
| 200 | 34, 36, 199 | nf3an 1831 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏(𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) |
| 201 | | nfv 1843 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏(𝑙‘((𝐺 ∘ 𝑣)‘𝑖)) ∈ ((𝐺 ∘ 𝑣)‘𝑖) |
| 202 | 200, 201 | nfim 1825 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) → (𝑙‘((𝐺 ∘ 𝑣)‘𝑖)) ∈ ((𝐺 ∘ 𝑣)‘𝑖)) |
| 203 | | eleq1 2689 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ((𝐺 ∘ 𝑣)‘𝑖) → (𝑏 ∈ ran 𝐺 ↔ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺)) |
| 204 | 203 | 3anbi3d 1405 |
. . . . . . . . . . . 12
⊢ (𝑏 = ((𝐺 ∘ 𝑣)‘𝑖) → ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) ↔ (𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺))) |
| 205 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ((𝐺 ∘ 𝑣)‘𝑖) → (𝑙‘𝑏) = (𝑙‘((𝐺 ∘ 𝑣)‘𝑖))) |
| 206 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ((𝐺 ∘ 𝑣)‘𝑖) → 𝑏 = ((𝐺 ∘ 𝑣)‘𝑖)) |
| 207 | 205, 206 | eleq12d 2695 |
. . . . . . . . . . . 12
⊢ (𝑏 = ((𝐺 ∘ 𝑣)‘𝑖) → ((𝑙‘𝑏) ∈ 𝑏 ↔ (𝑙‘((𝐺 ∘ 𝑣)‘𝑖)) ∈ ((𝐺 ∘ 𝑣)‘𝑖))) |
| 208 | 204, 207 | imbi12d 334 |
. . . . . . . . . . 11
⊢ (𝑏 = ((𝐺 ∘ 𝑣)‘𝑖) → (((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ 𝑏 ∈ ran 𝐺) → (𝑙‘𝑏) ∈ 𝑏) ↔ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) → (𝑙‘((𝐺 ∘ 𝑣)‘𝑖)) ∈ ((𝐺 ∘ 𝑣)‘𝑖)))) |
| 209 | 202, 208,
122 | vtoclg1f 3265 |
. . . . . . . . . 10
⊢ (((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺 → ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) → (𝑙‘((𝐺 ∘ 𝑣)‘𝑖)) ∈ ((𝐺 ∘ 𝑣)‘𝑖))) |
| 210 | 198, 209 | mpcom 38 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) ∧ ((𝐺 ∘ 𝑣)‘𝑖) ∈ ran 𝐺) → (𝑙‘((𝐺 ∘ 𝑣)‘𝑖)) ∈ ((𝐺 ∘ 𝑣)‘𝑖)) |
| 211 | 195, 196,
197, 210 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → (𝑙‘((𝐺 ∘ 𝑣)‘𝑖)) ∈ ((𝐺 ∘ 𝑣)‘𝑖)) |
| 212 | 194, 211 | eqeltrd 2701 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ ((𝐺 ∘ 𝑣)‘𝑖)) |
| 213 | | fvco3 6275 |
. . . . . . . . . . . 12
⊢ ((𝑣:(1...𝑀)⟶𝑅 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺 ∘ 𝑣)‘𝑖) = (𝐺‘(𝑣‘𝑖))) |
| 214 | 187, 213 | sylan 488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺 ∘ 𝑣)‘𝑖) = (𝐺‘(𝑣‘𝑖))) |
| 215 | 187 | ffvelrnda 6359 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑣‘𝑖) ∈ 𝑅) |
| 216 | 50 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 ∈ V) |
| 217 | | rabexg 4812 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ V → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) |
| 218 | 216, 217 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) |
| 219 | | raleq 3138 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝑣‘𝑖) → (∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ↔ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀))) |
| 220 | 219 | 3anbi2d 1404 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑣‘𝑖) → ((∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)))) |
| 221 | 220 | rabbidv 3189 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑣‘𝑖) → {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 222 | 221, 5 | fvmptg 6280 |
. . . . . . . . . . . 12
⊢ (((𝑣‘𝑖) ∈ 𝑅 ∧ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ∈ V) → (𝐺‘(𝑣‘𝑖)) = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 223 | 215, 218,
222 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘(𝑣‘𝑖)) = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 224 | 214, 223 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺 ∘ 𝑣)‘𝑖) = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 225 | 224 | adantlr 751 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺 ∘ 𝑣)‘𝑖) = {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 226 | 225 | eleq2d 2687 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ ((𝐺 ∘ 𝑣)‘𝑖) ↔ ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))})) |
| 227 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎℎ𝑣 |
| 228 | 24, 227 | nfco 5287 |
. . . . . . . . . . . . 13
⊢
Ⅎℎ(𝐺 ∘ 𝑣) |
| 229 | 20, 228 | nfco 5287 |
. . . . . . . . . . . 12
⊢
Ⅎℎ(𝑙 ∘ (𝐺 ∘ 𝑣)) |
| 230 | | nfcv 2764 |
. . . . . . . . . . . 12
⊢
Ⅎℎ𝑖 |
| 231 | 229, 230 | nffv 6198 |
. . . . . . . . . . 11
⊢
Ⅎℎ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) |
| 232 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎℎ𝐴 |
| 233 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎℎ𝑇 |
| 234 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎℎ0 |
| 235 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎℎ
≤ |
| 236 | | nfcv 2764 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎℎ𝑡 |
| 237 | 231, 236 | nffv 6198 |
. . . . . . . . . . . . . . 15
⊢
Ⅎℎ(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) |
| 238 | 234, 235,
237 | nfbr 4699 |
. . . . . . . . . . . . . 14
⊢
Ⅎℎ0 ≤
(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) |
| 239 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎℎ1 |
| 240 | 237, 235,
239 | nfbr 4699 |
. . . . . . . . . . . . . 14
⊢
Ⅎℎ(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1 |
| 241 | 238, 240 | nfan 1828 |
. . . . . . . . . . . . 13
⊢
Ⅎℎ(0 ≤
(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1) |
| 242 | 233, 241 | nfral 2945 |
. . . . . . . . . . . 12
⊢
Ⅎℎ∀𝑡 ∈ 𝑇 (0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1) |
| 243 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎℎ(𝑣‘𝑖) |
| 244 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎℎ
< |
| 245 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎℎ(𝐸 / 𝑀) |
| 246 | 237, 244,
245 | nfbr 4699 |
. . . . . . . . . . . . 13
⊢
Ⅎℎ(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) |
| 247 | 243, 246 | nfral 2945 |
. . . . . . . . . . . 12
⊢
Ⅎℎ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) |
| 248 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎℎ(𝑇 ∖ 𝑈) |
| 249 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎℎ(1
− (𝐸 / 𝑀)) |
| 250 | 249, 244,
237 | nfbr 4699 |
. . . . . . . . . . . . 13
⊢
Ⅎℎ(1 −
(𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) |
| 251 | 248, 250 | nfral 2945 |
. . . . . . . . . . . 12
⊢
Ⅎℎ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) |
| 252 | 242, 247,
251 | nf3an 1831 |
. . . . . . . . . . 11
⊢
Ⅎℎ(∀𝑡 ∈ 𝑇 (0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) |
| 253 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡ℎ |
| 254 | | nfcv 2764 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑡𝑙 |
| 255 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡𝑅 |
| 256 | | nfra1 2941 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) |
| 257 | | nfra1 2941 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) |
| 258 | | nfra1 2941 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑡∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡) |
| 259 | 256, 257,
258 | nf3an 1831 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡(∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)) |
| 260 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡𝐴 |
| 261 | 259, 260 | nfrab 3123 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡{ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} |
| 262 | 255, 261 | nfmpt 4746 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡(𝑤 ∈ 𝑅 ↦ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) |
| 263 | 5, 262 | nfcxfr 2762 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡𝐺 |
| 264 | | nfcv 2764 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡𝑣 |
| 265 | 263, 264 | nfco 5287 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑡(𝐺 ∘ 𝑣) |
| 266 | 254, 265 | nfco 5287 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡(𝑙 ∘ (𝐺 ∘ 𝑣)) |
| 267 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡𝑖 |
| 268 | 266, 267 | nffv 6198 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) |
| 269 | 253, 268 | nfeq 2776 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡 ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) |
| 270 | | fveq1 6190 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → (ℎ‘𝑡) = (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) |
| 271 | 270 | breq2d 4665 |
. . . . . . . . . . . . . 14
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → (0 ≤ (ℎ‘𝑡) ↔ 0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) |
| 272 | 270 | breq1d 4663 |
. . . . . . . . . . . . . 14
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → ((ℎ‘𝑡) ≤ 1 ↔ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1)) |
| 273 | 271, 272 | anbi12d 747 |
. . . . . . . . . . . . 13
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → ((0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ (0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1))) |
| 274 | 269, 273 | ralbid 2983 |
. . . . . . . . . . . 12
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1))) |
| 275 | 270 | breq1d 4663 |
. . . . . . . . . . . . 13
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → ((ℎ‘𝑡) < (𝐸 / 𝑀) ↔ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀))) |
| 276 | 269, 275 | ralbid 2983 |
. . . . . . . . . . . 12
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → (∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ↔ ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀))) |
| 277 | 270 | breq2d 4665 |
. . . . . . . . . . . . 13
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → ((1 − (𝐸 / 𝑀)) < (ℎ‘𝑡) ↔ (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) |
| 278 | 269, 277 | ralbid 2983 |
. . . . . . . . . . . 12
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → (∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡) ↔ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) |
| 279 | 274, 276,
278 | 3anbi123d 1399 |
. . . . . . . . . . 11
⊢ (ℎ = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) → ((∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)))) |
| 280 | 231, 232,
252, 279 | elrabf 3360 |
. . . . . . . . . 10
⊢ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} ↔ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)))) |
| 281 | 280 | simprbi 480 |
. . . . . . . . 9
⊢ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → (∀𝑡 ∈ 𝑇 (0 ≤ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ∧ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) |
| 282 | 281 | simp2d 1074 |
. . . . . . . 8
⊢ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀)) |
| 283 | 226, 282 | syl6bi 243 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ ((𝐺 ∘ 𝑣)‘𝑖) → ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀))) |
| 284 | 212, 283 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀)) |
| 285 | | stoweidlem31.2 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝜑 |
| 286 | 263 | nfrn 5368 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡ran
𝐺 |
| 287 | 254, 286 | nffn 5987 |
. . . . . . . . . 10
⊢
Ⅎ𝑡 𝑙 Fn ran 𝐺 |
| 288 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) |
| 289 | 286, 288 | nfral 2945 |
. . . . . . . . . 10
⊢
Ⅎ𝑡∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏) |
| 290 | 287, 289 | nfan 1828 |
. . . . . . . . 9
⊢
Ⅎ𝑡(𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏)) |
| 291 | 285, 290 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎ𝑡(𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) |
| 292 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑖 ∈ (1...𝑀) |
| 293 | 291, 292 | nfan 1828 |
. . . . . . 7
⊢
Ⅎ𝑡((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) |
| 294 | | stoweidlem31.11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ⊆ (𝑇 ∖ 𝑈)) |
| 295 | 294 | ad3antrrr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ 𝐵) → 𝐵 ⊆ (𝑇 ∖ 𝑈)) |
| 296 | | simpr 477 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ 𝐵) → 𝑡 ∈ 𝐵) |
| 297 | 295, 296 | sseldd 3604 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ 𝐵) → 𝑡 ∈ (𝑇 ∖ 𝑈)) |
| 298 | 281 | simp3d 1075 |
. . . . . . . . . . . 12
⊢ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝑣‘𝑖)(ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))} → ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) |
| 299 | 226, 298 | syl6bi 243 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖) ∈ ((𝐺 ∘ 𝑣)‘𝑖) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) |
| 300 | 212, 299 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) |
| 301 | 300 | r19.21bi 2932 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) |
| 302 | 297, 301 | syldan 487 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ 𝐵) → (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) |
| 303 | 302 | ex 450 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → (𝑡 ∈ 𝐵 → (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) |
| 304 | 293, 303 | ralrimi 2957 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) |
| 305 | 284, 304 | jca 554 |
. . . . 5
⊢ (((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) ∧ 𝑖 ∈ (1...𝑀)) → (∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) |
| 306 | 305 | ralrimiva 2966 |
. . . 4
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) |
| 307 | 192, 306 | jca 554 |
. . 3
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → ((𝑙 ∘ (𝐺 ∘ 𝑣)):(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)))) |
| 308 | | feq1 6026 |
. . . . 5
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → (𝑥:(1...𝑀)⟶𝑌 ↔ (𝑙 ∘ (𝐺 ∘ 𝑣)):(1...𝑀)⟶𝑌)) |
| 309 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝑥 |
| 310 | 309, 266 | nfeq 2776 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) |
| 311 | | fveq1 6190 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → (𝑥‘𝑖) = ((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)) |
| 312 | 311 | fveq1d 6193 |
. . . . . . . . 9
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → ((𝑥‘𝑖)‘𝑡) = (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)) |
| 313 | 312 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → (((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ↔ (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀))) |
| 314 | 310, 313 | ralbid 2983 |
. . . . . . 7
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → (∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ↔ ∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀))) |
| 315 | 312 | breq2d 4665 |
. . . . . . . 8
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → ((1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡) ↔ (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) |
| 316 | 310, 315 | ralbid 2983 |
. . . . . . 7
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → (∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡) ↔ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) |
| 317 | 314, 316 | anbi12d 747 |
. . . . . 6
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → ((∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡)) ↔ (∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)))) |
| 318 | 317 | ralbidv 2986 |
. . . . 5
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → (∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡)) ↔ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡)))) |
| 319 | 308, 318 | anbi12d 747 |
. . . 4
⊢ (𝑥 = (𝑙 ∘ (𝐺 ∘ 𝑣)) → ((𝑥:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡))) ↔ ((𝑙 ∘ (𝐺 ∘ 𝑣)):(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))))) |
| 320 | 319 | spcegv 3294 |
. . 3
⊢ ((𝑙 ∘ (𝐺 ∘ 𝑣)) ∈ V → (((𝑙 ∘ (𝐺 ∘ 𝑣)):(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)(((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < (((𝑙 ∘ (𝐺 ∘ 𝑣))‘𝑖)‘𝑡))) → ∃𝑥(𝑥:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡))))) |
| 321 | 17, 307, 320 | sylc 65 |
. 2
⊢ ((𝜑 ∧ (𝑙 Fn ran 𝐺 ∧ ∀𝑏 ∈ ran 𝐺(𝑏 ≠ ∅ → (𝑙‘𝑏) ∈ 𝑏))) → ∃𝑥(𝑥:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡)))) |
| 322 | 3, 321 | exlimddv 1863 |
1
⊢ (𝜑 → ∃𝑥(𝑥:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡)))) |