![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege77d | Structured version Visualization version GIF version |
Description: If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 77 of [Frege1879] p. 62. Compare with frege77 38234. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege77d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege77d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
frege77d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
frege77d.ab | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
frege77d.he | ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) |
frege77d.ss | ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) |
Ref | Expression |
---|---|
frege77d | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege77d.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | imaundi 5545 | . . . 4 ⊢ (𝑅 “ ({𝐴} ∪ 𝑈)) = ((𝑅 “ {𝐴}) ∪ (𝑅 “ 𝑈)) | |
3 | frege77d.ss | . . . . 5 ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) | |
4 | frege77d.he | . . . . 5 ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) | |
5 | 3, 4 | unssd 3789 | . . . 4 ⊢ (𝜑 → ((𝑅 “ {𝐴}) ∪ (𝑅 “ 𝑈)) ⊆ 𝑈) |
6 | 2, 5 | syl5eqss 3649 | . . 3 ⊢ (𝜑 → (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈) |
7 | trclimalb2 38018 | . . 3 ⊢ ((𝑅 ∈ V ∧ (𝑅 “ ({𝐴} ∪ 𝑈)) ⊆ 𝑈) → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈) | |
8 | 1, 6, 7 | syl2anc 693 | . 2 ⊢ (𝜑 → ((t+‘𝑅) “ {𝐴}) ⊆ 𝑈) |
9 | frege77d.ab | . . . 4 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | |
10 | df-br 4654 | . . . 4 ⊢ (𝐴(t+‘𝑅)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅)) | |
11 | 9, 10 | sylib 208 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (t+‘𝑅)) |
12 | frege77d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
13 | frege77d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) | |
14 | elimasng 5491 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅))) | |
15 | 12, 13, 14 | syl2anc 693 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ((t+‘𝑅) “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ (t+‘𝑅))) |
16 | 11, 15 | mpbird 247 | . 2 ⊢ (𝜑 → 𝐵 ∈ ((t+‘𝑅) “ {𝐴})) |
17 | 8, 16 | sseldd 3604 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 ⊆ wss 3574 {csn 4177 〈cop 4183 class class class wbr 4653 “ cima 5117 ‘cfv 5888 t+ctcl 13724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-seq 12802 df-trcl 13726 df-relexp 13761 |
This theorem is referenced by: frege81d 38039 frege87d 38042 |
Copyright terms: Public domain | W3C validator |