MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuptinv Structured version   Visualization version   Unicode version

Theorem frgpuptinv 18184
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b  |-  B  =  ( Base `  H
)
frgpup.n  |-  N  =  ( invg `  H )
frgpup.t  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
frgpup.h  |-  ( ph  ->  H  e.  Grp )
frgpup.i  |-  ( ph  ->  I  e.  V )
frgpup.a  |-  ( ph  ->  F : I --> B )
frgpuptinv.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
Assertion
Ref Expression
frgpuptinv  |-  ( (
ph  /\  A  e.  ( I  X.  2o ) )  ->  ( T `  ( M `  A ) )  =  ( N `  ( T `  A )
) )
Distinct variable groups:    y, z, A    y, F, z    y, N, z    y, B, z    ph, y, z    y, I, z
Allowed substitution hints:    T( y, z)    H( y, z)    M( y, z)    V( y, z)

Proof of Theorem frgpuptinv
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5132 . . 3  |-  ( A  e.  ( I  X.  2o )  <->  E. a  e.  I  E. b  e.  2o  A  =  <. a ,  b >. )
2 frgpuptinv.m . . . . . . . . . 10  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
32efgmval 18125 . . . . . . . . 9  |-  ( ( a  e.  I  /\  b  e.  2o )  ->  ( a M b )  =  <. a ,  ( 1o  \ 
b ) >. )
43adantl 482 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  I  /\  b  e.  2o ) )  -> 
( a M b )  =  <. a ,  ( 1o  \ 
b ) >. )
54fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  I  /\  b  e.  2o ) )  -> 
( T `  (
a M b ) )  =  ( T `
 <. a ,  ( 1o  \  b )
>. ) )
6 df-ov 6653 . . . . . . 7  |-  ( a T ( 1o  \ 
b ) )  =  ( T `  <. a ,  ( 1o  \ 
b ) >. )
75, 6syl6eqr 2674 . . . . . 6  |-  ( (
ph  /\  ( a  e.  I  /\  b  e.  2o ) )  -> 
( T `  (
a M b ) )  =  ( a T ( 1o  \ 
b ) ) )
8 elpri 4197 . . . . . . . . 9  |-  ( b  e.  { (/) ,  1o }  ->  ( b  =  (/)  \/  b  =  1o ) )
9 df2o3 7573 . . . . . . . . 9  |-  2o  =  { (/) ,  1o }
108, 9eleq2s 2719 . . . . . . . 8  |-  ( b  e.  2o  ->  (
b  =  (/)  \/  b  =  1o ) )
11 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  I )  ->  a  e.  I )
12 1on 7567 . . . . . . . . . . . . . . 15  |-  1o  e.  On
1312elexi 3213 . . . . . . . . . . . . . 14  |-  1o  e.  _V
1413prid2 4298 . . . . . . . . . . . . 13  |-  1o  e.  {
(/) ,  1o }
1514, 9eleqtrri 2700 . . . . . . . . . . . 12  |-  1o  e.  2o
16 1n0 7575 . . . . . . . . . . . . . . . 16  |-  1o  =/=  (/)
17 neeq1 2856 . . . . . . . . . . . . . . . 16  |-  ( z  =  1o  ->  (
z  =/=  (/)  <->  1o  =/=  (/) ) )
1816, 17mpbiri 248 . . . . . . . . . . . . . . 15  |-  ( z  =  1o  ->  z  =/=  (/) )
19 ifnefalse 4098 . . . . . . . . . . . . . . 15  |-  ( z  =/=  (/)  ->  if (
z  =  (/) ,  ( F `  y ) ,  ( N `  ( F `  y ) ) )  =  ( N `  ( F `
 y ) ) )
2018, 19syl 17 . . . . . . . . . . . . . 14  |-  ( z  =  1o  ->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) )  =  ( N `  ( F `  y ) ) )
21 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( y  =  a  ->  ( F `  y )  =  ( F `  a ) )
2221fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( y  =  a  ->  ( N `  ( F `  y ) )  =  ( N `  ( F `  a )
) )
2320, 22sylan9eqr 2678 . . . . . . . . . . . . 13  |-  ( ( y  =  a  /\  z  =  1o )  ->  if ( z  =  (/) ,  ( F `  y ) ,  ( N `  ( F `
 y ) ) )  =  ( N `
 ( F `  a ) ) )
24 frgpup.t . . . . . . . . . . . . 13  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
25 fvex 6201 . . . . . . . . . . . . 13  |-  ( N `
 ( F `  a ) )  e. 
_V
2623, 24, 25ovmpt2a 6791 . . . . . . . . . . . 12  |-  ( ( a  e.  I  /\  1o  e.  2o )  -> 
( a T 1o )  =  ( N `
 ( F `  a ) ) )
2711, 15, 26sylancl 694 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  I )  ->  (
a T 1o )  =  ( N `  ( F `  a ) ) )
28 0ex 4790 . . . . . . . . . . . . . . 15  |-  (/)  e.  _V
2928prid1 4297 . . . . . . . . . . . . . 14  |-  (/)  e.  { (/)
,  1o }
3029, 9eleqtrri 2700 . . . . . . . . . . . . 13  |-  (/)  e.  2o
31 iftrue 4092 . . . . . . . . . . . . . . 15  |-  ( z  =  (/)  ->  if ( z  =  (/) ,  ( F `  y ) ,  ( N `  ( F `  y ) ) )  =  ( F `  y ) )
3231, 21sylan9eqr 2678 . . . . . . . . . . . . . 14  |-  ( ( y  =  a  /\  z  =  (/) )  ->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) )  =  ( F `  a ) )
33 fvex 6201 . . . . . . . . . . . . . 14  |-  ( F `
 a )  e. 
_V
3432, 24, 33ovmpt2a 6791 . . . . . . . . . . . . 13  |-  ( ( a  e.  I  /\  (/) 
e.  2o )  -> 
( a T (/) )  =  ( F `  a ) )
3511, 30, 34sylancl 694 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  I )  ->  (
a T (/) )  =  ( F `  a
) )
3635fveq2d 6195 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  I )  ->  ( N `  ( a T (/) ) )  =  ( N `  ( F `  a )
) )
3727, 36eqtr4d 2659 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  I )  ->  (
a T 1o )  =  ( N `  ( a T (/) ) ) )
38 difeq2 3722 . . . . . . . . . . . . 13  |-  ( b  =  (/)  ->  ( 1o 
\  b )  =  ( 1o  \  (/) ) )
39 dif0 3950 . . . . . . . . . . . . 13  |-  ( 1o 
\  (/) )  =  1o
4038, 39syl6eq 2672 . . . . . . . . . . . 12  |-  ( b  =  (/)  ->  ( 1o 
\  b )  =  1o )
4140oveq2d 6666 . . . . . . . . . . 11  |-  ( b  =  (/)  ->  ( a T ( 1o  \ 
b ) )  =  ( a T 1o ) )
42 oveq2 6658 . . . . . . . . . . . 12  |-  ( b  =  (/)  ->  ( a T b )  =  ( a T (/) ) )
4342fveq2d 6195 . . . . . . . . . . 11  |-  ( b  =  (/)  ->  ( N `
 ( a T b ) )  =  ( N `  (
a T (/) ) ) )
4441, 43eqeq12d 2637 . . . . . . . . . 10  |-  ( b  =  (/)  ->  ( ( a T ( 1o 
\  b ) )  =  ( N `  ( a T b ) )  <->  ( a T 1o )  =  ( N `  ( a T (/) ) ) ) )
4537, 44syl5ibrcom 237 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  I )  ->  (
b  =  (/)  ->  (
a T ( 1o 
\  b ) )  =  ( N `  ( a T b ) ) ) )
4637fveq2d 6195 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  I )  ->  ( N `  ( a T 1o ) )  =  ( N `  ( N `  ( a T (/) ) ) ) )
47 frgpup.h . . . . . . . . . . . . 13  |-  ( ph  ->  H  e.  Grp )
4847adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  I )  ->  H  e.  Grp )
49 frgpup.a . . . . . . . . . . . . . 14  |-  ( ph  ->  F : I --> B )
5049ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  I )  ->  ( F `  a )  e.  B )
5135, 50eqeltrd 2701 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  I )  ->  (
a T (/) )  e.  B )
52 frgpup.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  H
)
53 frgpup.n . . . . . . . . . . . . 13  |-  N  =  ( invg `  H )
5452, 53grpinvinv 17482 . . . . . . . . . . . 12  |-  ( ( H  e.  Grp  /\  ( a T (/) )  e.  B )  ->  ( N `  ( N `  ( a T (/) ) ) )  =  ( a T
(/) ) )
5548, 51, 54syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  I )  ->  ( N `  ( N `  ( a T (/) ) ) )  =  ( a T (/) ) )
5646, 55eqtr2d 2657 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  I )  ->  (
a T (/) )  =  ( N `  (
a T 1o ) ) )
57 difeq2 3722 . . . . . . . . . . . . 13  |-  ( b  =  1o  ->  ( 1o  \  b )  =  ( 1o  \  1o ) )
58 difid 3948 . . . . . . . . . . . . 13  |-  ( 1o 
\  1o )  =  (/)
5957, 58syl6eq 2672 . . . . . . . . . . . 12  |-  ( b  =  1o  ->  ( 1o  \  b )  =  (/) )
6059oveq2d 6666 . . . . . . . . . . 11  |-  ( b  =  1o  ->  (
a T ( 1o 
\  b ) )  =  ( a T
(/) ) )
61 oveq2 6658 . . . . . . . . . . . 12  |-  ( b  =  1o  ->  (
a T b )  =  ( a T 1o ) )
6261fveq2d 6195 . . . . . . . . . . 11  |-  ( b  =  1o  ->  ( N `  ( a T b ) )  =  ( N `  ( a T 1o ) ) )
6360, 62eqeq12d 2637 . . . . . . . . . 10  |-  ( b  =  1o  ->  (
( a T ( 1o  \  b ) )  =  ( N `
 ( a T b ) )  <->  ( a T (/) )  =  ( N `  ( a T 1o ) ) ) )
6456, 63syl5ibrcom 237 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  I )  ->  (
b  =  1o  ->  ( a T ( 1o 
\  b ) )  =  ( N `  ( a T b ) ) ) )
6545, 64jaod 395 . . . . . . . 8  |-  ( (
ph  /\  a  e.  I )  ->  (
( b  =  (/)  \/  b  =  1o )  ->  ( a T ( 1o  \  b
) )  =  ( N `  ( a T b ) ) ) )
6610, 65syl5 34 . . . . . . 7  |-  ( (
ph  /\  a  e.  I )  ->  (
b  e.  2o  ->  ( a T ( 1o 
\  b ) )  =  ( N `  ( a T b ) ) ) )
6766impr 649 . . . . . 6  |-  ( (
ph  /\  ( a  e.  I  /\  b  e.  2o ) )  -> 
( a T ( 1o  \  b ) )  =  ( N `
 ( a T b ) ) )
687, 67eqtrd 2656 . . . . 5  |-  ( (
ph  /\  ( a  e.  I  /\  b  e.  2o ) )  -> 
( T `  (
a M b ) )  =  ( N `
 ( a T b ) ) )
69 fveq2 6191 . . . . . . . 8  |-  ( A  =  <. a ,  b
>.  ->  ( M `  A )  =  ( M `  <. a ,  b >. )
)
70 df-ov 6653 . . . . . . . 8  |-  ( a M b )  =  ( M `  <. a ,  b >. )
7169, 70syl6eqr 2674 . . . . . . 7  |-  ( A  =  <. a ,  b
>.  ->  ( M `  A )  =  ( a M b ) )
7271fveq2d 6195 . . . . . 6  |-  ( A  =  <. a ,  b
>.  ->  ( T `  ( M `  A ) )  =  ( T `
 ( a M b ) ) )
73 fveq2 6191 . . . . . . . 8  |-  ( A  =  <. a ,  b
>.  ->  ( T `  A )  =  ( T `  <. a ,  b >. )
)
74 df-ov 6653 . . . . . . . 8  |-  ( a T b )  =  ( T `  <. a ,  b >. )
7573, 74syl6eqr 2674 . . . . . . 7  |-  ( A  =  <. a ,  b
>.  ->  ( T `  A )  =  ( a T b ) )
7675fveq2d 6195 . . . . . 6  |-  ( A  =  <. a ,  b
>.  ->  ( N `  ( T `  A ) )  =  ( N `
 ( a T b ) ) )
7772, 76eqeq12d 2637 . . . . 5  |-  ( A  =  <. a ,  b
>.  ->  ( ( T `
 ( M `  A ) )  =  ( N `  ( T `  A )
)  <->  ( T `  ( a M b ) )  =  ( N `  ( a T b ) ) ) )
7868, 77syl5ibrcom 237 . . . 4  |-  ( (
ph  /\  ( a  e.  I  /\  b  e.  2o ) )  -> 
( A  =  <. a ,  b >.  ->  ( T `  ( M `  A ) )  =  ( N `  ( T `  A )
) ) )
7978rexlimdvva 3038 . . 3  |-  ( ph  ->  ( E. a  e.  I  E. b  e.  2o  A  =  <. a ,  b >.  ->  ( T `  ( M `  A ) )  =  ( N `  ( T `  A )
) ) )
801, 79syl5bi 232 . 2  |-  ( ph  ->  ( A  e.  ( I  X.  2o )  ->  ( T `  ( M `  A ) )  =  ( N `
 ( T `  A ) ) ) )
8180imp 445 1  |-  ( (
ph  /\  A  e.  ( I  X.  2o ) )  ->  ( T `  ( M `  A ) )  =  ( N `  ( T `  A )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   (/)c0 3915   ifcif 4086   {cpr 4179   <.cop 4183    X. cxp 5112   Oncon0 5723   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   Basecbs 15857   Grpcgrp 17422   invgcminusg 17423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-2o 7561  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426
This theorem is referenced by:  frgpuplem  18185
  Copyright terms: Public domain W3C validator