Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvray Structured version   Visualization version   GIF version

Theorem fvray 32248
Description: Calculate the value of the Ray function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvray ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (𝑃Ray𝐴) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑃

Proof of Theorem fvray
Dummy variables 𝑎 𝑛 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6653 . 2 (𝑃Ray𝐴) = (Ray‘⟨𝑃, 𝐴⟩)
2 eqid 2622 . . . . 5 {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}
3 fveq2 6191 . . . . . . . . 9 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
43eleq2d 2687 . . . . . . . 8 (𝑛 = 𝑁 → (𝑃 ∈ (𝔼‘𝑛) ↔ 𝑃 ∈ (𝔼‘𝑁)))
53eleq2d 2687 . . . . . . . 8 (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁)))
64, 53anbi12d 1400 . . . . . . 7 (𝑛 = 𝑁 → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ↔ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)))
7 rabeq 3192 . . . . . . . . 9 ((𝔼‘𝑛) = (𝔼‘𝑁) → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
83, 7syl 17 . . . . . . . 8 (𝑛 = 𝑁 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
98eqeq2d 2632 . . . . . . 7 (𝑛 = 𝑁 → ({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
106, 9anbi12d 747 . . . . . 6 (𝑛 = 𝑁 → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
1110rspcev 3309 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})) → ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
122, 11mpanr2 720 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
13 simpr1 1067 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → 𝑃 ∈ (𝔼‘𝑁))
14 simpr2 1068 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → 𝐴 ∈ (𝔼‘𝑁))
15 fvex 6201 . . . . . . 7 (𝔼‘𝑁) ∈ V
1615rabex 4813 . . . . . 6 {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ∈ V
17 eleq1 2689 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝 ∈ (𝔼‘𝑛) ↔ 𝑃 ∈ (𝔼‘𝑛)))
18 neeq1 2856 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝𝑎𝑃𝑎))
1917, 183anbi13d 1401 . . . . . . . . 9 (𝑝 = 𝑃 → ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ↔ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎)))
20 breq1 4656 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝OutsideOf⟨𝑎, 𝑥⟩ ↔ 𝑃OutsideOf⟨𝑎, 𝑥⟩))
2120rabbidv 3189 . . . . . . . . . 10 (𝑝 = 𝑃 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})
2221eqeq2d 2632 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}))
2319, 22anbi12d 747 . . . . . . . 8 (𝑝 = 𝑃 → (((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})))
2423rexbidv 3052 . . . . . . 7 (𝑝 = 𝑃 → (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩})))
25 eleq1 2689 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
26 neeq2 2857 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑃𝑎𝑃𝐴))
2725, 263anbi23d 1402 . . . . . . . . 9 (𝑎 = 𝐴 → ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ↔ (𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴)))
28 opeq1 4402 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ⟨𝑎, 𝑥⟩ = ⟨𝐴, 𝑥⟩)
2928breq2d 4665 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑃OutsideOf⟨𝑎, 𝑥⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝑥⟩))
3029rabbidv 3189 . . . . . . . . . 10 (𝑎 = 𝐴 → {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
3130eqeq2d 2632 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩} ↔ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
3227, 31anbi12d 747 . . . . . . . 8 (𝑎 = 𝐴 → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3332rexbidv 3052 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑃𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝑎, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
34 eqeq1 2626 . . . . . . . . 9 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
3534anbi2d 740 . . . . . . . 8 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3635rexbidv 3052 . . . . . . 7 (𝑟 = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}) ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3724, 33, 36eloprabg 6748 . . . . . 6 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ∈ V) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3816, 37mp3an3 1413 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
3913, 14, 38syl2anc 693 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝑃𝐴) ∧ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})))
4012, 39mpbird 247 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
41 df-br 4654 . . . . 5 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ Ray)
42 df-ray 32245 . . . . . 6 Ray = {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
4342eleq2i 2693 . . . . 5 (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ Ray ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
4441, 43bitri 264 . . . 4 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} ↔ ⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})})
45 funray 32247 . . . . 5 Fun Ray
46 funbrfv 6234 . . . . 5 (Fun Ray → (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}))
4745, 46ax-mp 5 . . . 4 (⟨𝑃, 𝐴⟩Ray{𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
4844, 47sylbir 225 . . 3 (⟨⟨𝑃, 𝐴⟩, {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩}⟩ ∈ {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})} → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
4940, 48syl 17 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (Ray‘⟨𝑃, 𝐴⟩) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
501, 49syl5eq 2668 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃𝐴)) → (𝑃Ray𝐴) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝐴, 𝑥⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  Vcvv 3200  cop 4183   class class class wbr 4653  Fun wfun 5882  cfv 5888  (class class class)co 6650  {coprab 6651  cn 11020  𝔼cee 25768  OutsideOfcoutsideof 32226  Raycray 32242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-z 11378  df-uz 11688  df-fz 12327  df-ee 25771  df-ray 32245
This theorem is referenced by:  lineunray  32254
  Copyright terms: Public domain W3C validator