![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzsplit1nn0 | Structured version Visualization version GIF version |
Description: Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.) |
Ref | Expression |
---|---|
fzsplit1nn0 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11294 | . . 3 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
2 | nnge1 11046 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
3 | 2 | adantr 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 1 ≤ 𝐴) |
4 | simprr 796 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ≤ 𝐵) | |
5 | nnz 11399 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
6 | 5 | adantr 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℤ) |
7 | 1zzd 11408 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 1 ∈ ℤ) | |
8 | nn0z 11400 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
9 | 8 | ad2antrl 764 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐵 ∈ ℤ) |
10 | elfz 12332 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ (1...𝐵) ↔ (1 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | |
11 | 6, 7, 9, 10 | syl3anc 1326 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (𝐴 ∈ (1...𝐵) ↔ (1 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
12 | 3, 4, 11 | mpbir2and 957 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ (1...𝐵)) |
13 | fzsplit 12367 | . . . . . 6 ⊢ (𝐴 ∈ (1...𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
15 | uncom 3757 | . . . . . 6 ⊢ ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)) = (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) | |
16 | oveq1 6657 | . . . . . . . . . . 11 ⊢ (𝐴 = 0 → (𝐴 + 1) = (0 + 1)) | |
17 | 16 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (𝐴 + 1) = (0 + 1)) |
18 | 0p1e1 11132 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
19 | 17, 18 | syl6eq 2672 | . . . . . . . . 9 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (𝐴 + 1) = 1) |
20 | 19 | oveq1d 6665 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → ((𝐴 + 1)...𝐵) = (1...𝐵)) |
21 | oveq2 6658 | . . . . . . . . . 10 ⊢ (𝐴 = 0 → (1...𝐴) = (1...0)) | |
22 | 21 | adantr 481 | . . . . . . . . 9 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐴) = (1...0)) |
23 | fz10 12362 | . . . . . . . . 9 ⊢ (1...0) = ∅ | |
24 | 22, 23 | syl6eq 2672 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐴) = ∅) |
25 | 20, 24 | uneq12d 3768 | . . . . . . 7 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = ((1...𝐵) ∪ ∅)) |
26 | un0 3967 | . . . . . . 7 ⊢ ((1...𝐵) ∪ ∅) = (1...𝐵) | |
27 | 25, 26 | syl6eq 2672 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = (1...𝐵)) |
28 | 15, 27 | syl5req 2669 | . . . . 5 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
29 | 14, 28 | jaoian 824 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
30 | 29 | ex 450 | . . 3 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → ((𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))) |
31 | 1, 30 | sylbi 207 | . 2 ⊢ (𝐴 ∈ ℕ0 → ((𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))) |
32 | 31 | 3impib 1262 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∪ cun 3572 ∅c0 3915 class class class wbr 4653 (class class class)co 6650 0cc0 9936 1c1 9937 + caddc 9939 ≤ cle 10075 ℕcn 11020 ℕ0cn0 11292 ℤcz 11377 ...cfz 12326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 |
This theorem is referenced by: eldioph2lem1 37323 |
Copyright terms: Public domain | W3C validator |