Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzsplit1nn0 Structured version   Visualization version   GIF version

Theorem fzsplit1nn0 37317
Description: Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
fzsplit1nn0 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝐴𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))

Proof of Theorem fzsplit1nn0
StepHypRef Expression
1 elnn0 11294 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 nnge1 11046 . . . . . . . 8 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
32adantr 481 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 1 ≤ 𝐴)
4 simprr 796 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 𝐴𝐵)
5 nnz 11399 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
65adantr 481 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 𝐴 ∈ ℤ)
7 1zzd 11408 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 1 ∈ ℤ)
8 nn0z 11400 . . . . . . . . 9 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
98ad2antrl 764 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 𝐵 ∈ ℤ)
10 elfz 12332 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ (1...𝐵) ↔ (1 ≤ 𝐴𝐴𝐵)))
116, 7, 9, 10syl3anc 1326 . . . . . . 7 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (𝐴 ∈ (1...𝐵) ↔ (1 ≤ 𝐴𝐴𝐵)))
123, 4, 11mpbir2and 957 . . . . . 6 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → 𝐴 ∈ (1...𝐵))
13 fzsplit 12367 . . . . . 6 (𝐴 ∈ (1...𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
1412, 13syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
15 uncom 3757 . . . . . 6 ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)) = (((𝐴 + 1)...𝐵) ∪ (1...𝐴))
16 oveq1 6657 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴 + 1) = (0 + 1))
1716adantr 481 . . . . . . . . . 10 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (𝐴 + 1) = (0 + 1))
18 0p1e1 11132 . . . . . . . . . 10 (0 + 1) = 1
1917, 18syl6eq 2672 . . . . . . . . 9 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (𝐴 + 1) = 1)
2019oveq1d 6665 . . . . . . . 8 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → ((𝐴 + 1)...𝐵) = (1...𝐵))
21 oveq2 6658 . . . . . . . . . 10 (𝐴 = 0 → (1...𝐴) = (1...0))
2221adantr 481 . . . . . . . . 9 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐴) = (1...0))
23 fz10 12362 . . . . . . . . 9 (1...0) = ∅
2422, 23syl6eq 2672 . . . . . . . 8 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐴) = ∅)
2520, 24uneq12d 3768 . . . . . . 7 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = ((1...𝐵) ∪ ∅))
26 un0 3967 . . . . . . 7 ((1...𝐵) ∪ ∅) = (1...𝐵)
2725, 26syl6eq 2672 . . . . . 6 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = (1...𝐵))
2815, 27syl5req 2669 . . . . 5 ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
2914, 28jaoian 824 . . . 4 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ0𝐴𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
3029ex 450 . . 3 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → ((𝐵 ∈ ℕ0𝐴𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))))
311, 30sylbi 207 . 2 (𝐴 ∈ ℕ0 → ((𝐵 ∈ ℕ0𝐴𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))))
32313impib 1262 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝐴𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  cun 3572  c0 3915   class class class wbr 4653  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  cn 11020  0cn0 11292  cz 11377  ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  eldioph2lem1  37323
  Copyright terms: Public domain W3C validator