| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnz | Structured version Visualization version GIF version | ||
| Description: A positive integer is an integer. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nnz | ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssz 11397 | . 2 ⊢ ℕ ⊆ ℤ | |
| 2 | 1 | sseli 3599 | 1 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) |
| Copyright terms: Public domain | W3C validator |