| Step | Hyp | Ref
| Expression |
| 1 | | gsumncl.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘𝑁)) |
| 2 | | seqp1 12816 |
. . 3
⊢ (𝑃 ∈
(ℤ≥‘𝑁) → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1)) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1)))) |
| 3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1)) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1)))) |
| 4 | | gsumncl.k |
. . 3
⊢ 𝐾 = (Base‘𝑀) |
| 5 | | gsumnunsn.a |
. . 3
⊢ + =
(+g‘𝑀) |
| 6 | | gsumncl.w |
. . 3
⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 7 | | peano2uz 11741 |
. . . 4
⊢ (𝑃 ∈
(ℤ≥‘𝑁) → (𝑃 + 1) ∈
(ℤ≥‘𝑁)) |
| 8 | 1, 7 | syl 17 |
. . 3
⊢ (𝜑 → (𝑃 + 1) ∈
(ℤ≥‘𝑁)) |
| 9 | | gsumncl.b |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵 ∈ 𝐾) |
| 10 | 9 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵 ∈ 𝐾) |
| 11 | | gsumnunsn.c |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶) |
| 12 | 11 | adantlr 751 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶) |
| 13 | | gsumnunsn.l |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| 14 | 13 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐶 ∈ 𝐾) |
| 15 | 12, 14 | eqeltrd 2701 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐵 ∈ 𝐾) |
| 16 | | elfzp1 12391 |
. . . . . . 7
⊢ (𝑃 ∈
(ℤ≥‘𝑁) → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↔ (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1)))) |
| 17 | 1, 16 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↔ (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1)))) |
| 18 | 17 | biimpa 501 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑃 + 1))) → (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1))) |
| 19 | 10, 15, 18 | mpjaodan 827 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑃 + 1))) → 𝐵 ∈ 𝐾) |
| 20 | | eqid 2622 |
. . . 4
⊢ (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) = (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) |
| 21 | 19, 20 | fmptd 6385 |
. . 3
⊢ (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵):(𝑁...(𝑃 + 1))⟶𝐾) |
| 22 | 4, 5, 6, 8, 21 | gsumval2 17280 |
. 2
⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1))) |
| 23 | | eqid 2622 |
. . . . . 6
⊢ (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵) = (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵) |
| 24 | 9, 23 | fmptd 6385 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵):(𝑁...𝑃)⟶𝐾) |
| 25 | 4, 5, 6, 1, 24 | gsumval2 17280 |
. . . 4
⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃)) |
| 26 | | fzssp1 12384 |
. . . . . . . 8
⊢ (𝑁...𝑃) ⊆ (𝑁...(𝑃 + 1)) |
| 27 | | resmpt 5449 |
. . . . . . . 8
⊢ ((𝑁...𝑃) ⊆ (𝑁...(𝑃 + 1)) → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃)) = (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) |
| 28 | 26, 27 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃)) = (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵) |
| 29 | 28 | fveq1i 6192 |
. . . . . 6
⊢ (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑖) |
| 30 | | fvres 6207 |
. . . . . . 7
⊢ (𝑖 ∈ (𝑁...𝑃) → (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖)) |
| 31 | 30 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁...𝑃)) → (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖)) |
| 32 | 29, 31 | syl5reqr 2671 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁...𝑃)) → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖) = ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑖)) |
| 33 | 1, 32 | seqfveq 12825 |
. . . 4
⊢ (𝜑 → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) = (seq𝑁( + , (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃)) |
| 34 | 25, 33 | eqtr4d 2659 |
. . 3
⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃)) |
| 35 | | eqidd 2623 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) = (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) |
| 36 | | eluzfz2 12349 |
. . . . . 6
⊢ ((𝑃 + 1) ∈
(ℤ≥‘𝑁) → (𝑃 + 1) ∈ (𝑁...(𝑃 + 1))) |
| 37 | 8, 36 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑃 + 1) ∈ (𝑁...(𝑃 + 1))) |
| 38 | 35, 11, 37, 13 | fvmptd 6288 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1)) = 𝐶) |
| 39 | 38 | eqcomd 2628 |
. . 3
⊢ (𝜑 → 𝐶 = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1))) |
| 40 | 34, 39 | oveq12d 6668 |
. 2
⊢ (𝜑 → ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1)))) |
| 41 | 3, 22, 40 | 3eqtr4d 2666 |
1
⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶)) |