MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gtndiv Structured version   Visualization version   GIF version

Theorem gtndiv 11454
Description: A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
gtndiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ)

Proof of Theorem gtndiv
StepHypRef Expression
1 nnre 11027 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
213ad2ant2 1083 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ)
3 simp1 1061 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ)
4 nngt0 11049 . . . 4 (𝐵 ∈ ℕ → 0 < 𝐵)
543ad2ant2 1083 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < 𝐵)
64adantl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
7 0re 10040 . . . . . . . 8 0 ∈ ℝ
8 lttr 10114 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵𝐵 < 𝐴) → 0 < 𝐴))
97, 8mp3an1 1411 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵𝐵 < 𝐴) → 0 < 𝐴))
101, 9sylan 488 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℝ) → ((0 < 𝐵𝐵 < 𝐴) → 0 < 𝐴))
1110ancoms 469 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → ((0 < 𝐵𝐵 < 𝐴) → 0 < 𝐴))
126, 11mpand 711 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ) → (𝐵 < 𝐴 → 0 < 𝐴))
13123impia 1261 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < 𝐴)
142, 3, 5, 13divgt0d 10959 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 0 < (𝐵 / 𝐴))
15 simp3 1063 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴)
16 1re 10039 . . . . . . 7 1 ∈ ℝ
17 ltdivmul2 10900 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴)))
1816, 17mp3an2 1412 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴)))
192, 3, 13, 18syl12anc 1324 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < (1 · 𝐴)))
20 recn 10026 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2120mulid2d 10058 . . . . . . 7 (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴)
2221breq2d 4665 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 < (1 · 𝐴) ↔ 𝐵 < 𝐴))
23223ad2ant1 1082 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 < (1 · 𝐴) ↔ 𝐵 < 𝐴))
2419, 23bitrd 268 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ((𝐵 / 𝐴) < 1 ↔ 𝐵 < 𝐴))
2515, 24mpbird 247 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 / 𝐴) < 1)
26 0p1e1 11132 . . 3 (0 + 1) = 1
2725, 26syl6breqr 4695 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → (𝐵 / 𝐴) < (0 + 1))
28 0z 11388 . . 3 0 ∈ ℤ
29 btwnnz 11453 . . 3 ((0 ∈ ℤ ∧ 0 < (𝐵 / 𝐴) ∧ (𝐵 / 𝐴) < (0 + 1)) → ¬ (𝐵 / 𝐴) ∈ ℤ)
3028, 29mp3an1 1411 . 2 ((0 < (𝐵 / 𝐴) ∧ (𝐵 / 𝐴) < (0 + 1)) → ¬ (𝐵 / 𝐴) ∈ ℤ)
3114, 27, 30syl2anc 693 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037  wcel 1990   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074   / cdiv 10684  cn 11020  cz 11377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378
This theorem is referenced by:  prime  11458
  Copyright terms: Public domain W3C validator