![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccordt | Structured version Visualization version GIF version |
Description: A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
iccordt | ⊢ (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 6653 | . 2 ⊢ (𝐴[,]𝐵) = ([,]‘〈𝐴, 𝐵〉) | |
2 | letsr 17227 | . . . . . 6 ⊢ ≤ ∈ TosetRel | |
3 | ledm 17224 | . . . . . . 7 ⊢ ℝ* = dom ≤ | |
4 | 3 | ordtcld3 21003 | . . . . . 6 ⊢ (( ≤ ∈ TosetRel ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ ))) |
5 | 2, 4 | mp3an1 1411 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ ))) |
6 | 5 | rgen2a 2977 | . . . 4 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )) |
7 | df-icc 12182 | . . . . 5 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
8 | 7 | fmpt2 7237 | . . . 4 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ∈ (Clsd‘(ordTop‘ ≤ )) ↔ [,]:(ℝ* × ℝ*)⟶(Clsd‘(ordTop‘ ≤ ))) |
9 | 6, 8 | mpbi 220 | . . 3 ⊢ [,]:(ℝ* × ℝ*)⟶(Clsd‘(ordTop‘ ≤ )) |
10 | letop 21010 | . . . 4 ⊢ (ordTop‘ ≤ ) ∈ Top | |
11 | 0cld 20842 | . . . 4 ⊢ ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (Clsd‘(ordTop‘ ≤ ))) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ ∅ ∈ (Clsd‘(ordTop‘ ≤ )) |
13 | 9, 12 | f0cli 6370 | . 2 ⊢ ([,]‘〈𝐴, 𝐵〉) ∈ (Clsd‘(ordTop‘ ≤ )) |
14 | 1, 13 | eqeltri 2697 | 1 ⊢ (𝐴[,]𝐵) ∈ (Clsd‘(ordTop‘ ≤ )) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 ∈ wcel 1990 ∀wral 2912 {crab 2916 ∅c0 3915 〈cop 4183 class class class wbr 4653 × cxp 5112 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℝ*cxr 10073 ≤ cle 10075 [,]cicc 12178 ordTopcordt 16159 TosetRel ctsr 17199 Topctop 20698 Clsdccld 20820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-icc 12182 df-topgen 16104 df-ordt 16161 df-ps 17200 df-tsr 17201 df-top 20699 df-topon 20716 df-bases 20750 df-cld 20823 |
This theorem is referenced by: lecldbas 21023 |
Copyright terms: Public domain | W3C validator |