Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incssnn0 Structured version   Visualization version   GIF version

Theorem incssnn0 37274
Description: Transitivity induction of subsets, lemma for nacsfix 37275. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
incssnn0 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0𝐵 ∈ (ℤ𝐴)) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem incssnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
21sseq2d 3633 . . . . 5 (𝑎 = 𝐴 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝐴)))
32imbi2d 330 . . . 4 (𝑎 = 𝐴 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐴))))
4 fveq2 6191 . . . . . 6 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
54sseq2d 3633 . . . . 5 (𝑎 = 𝑏 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝑏)))
65imbi2d 330 . . . 4 (𝑎 = 𝑏 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑏))))
7 fveq2 6191 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐹𝑎) = (𝐹‘(𝑏 + 1)))
87sseq2d 3633 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
98imbi2d 330 . . . 4 (𝑎 = (𝑏 + 1) → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
10 fveq2 6191 . . . . . 6 (𝑎 = 𝐵 → (𝐹𝑎) = (𝐹𝐵))
1110sseq2d 3633 . . . . 5 (𝑎 = 𝐵 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝐵)))
1211imbi2d 330 . . . 4 (𝑎 = 𝐵 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐵))))
13 ssid 3624 . . . . 5 (𝐹𝐴) ⊆ (𝐹𝐴)
14132a1i 12 . . . 4 (𝐴 ∈ ℤ → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐴)))
15 eluznn0 11757 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑏 ∈ (ℤ𝐴)) → 𝑏 ∈ ℕ0)
1615ancoms 469 . . . . . . . . 9 ((𝑏 ∈ (ℤ𝐴) ∧ 𝐴 ∈ ℕ0) → 𝑏 ∈ ℕ0)
17 fveq2 6191 . . . . . . . . . . 11 (𝑥 = 𝑏 → (𝐹𝑥) = (𝐹𝑏))
18 oveq1 6657 . . . . . . . . . . . 12 (𝑥 = 𝑏 → (𝑥 + 1) = (𝑏 + 1))
1918fveq2d 6195 . . . . . . . . . . 11 (𝑥 = 𝑏 → (𝐹‘(𝑥 + 1)) = (𝐹‘(𝑏 + 1)))
2017, 19sseq12d 3634 . . . . . . . . . 10 (𝑥 = 𝑏 → ((𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ↔ (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2120rspcv 3305 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2216, 21syl 17 . . . . . . . 8 ((𝑏 ∈ (ℤ𝐴) ∧ 𝐴 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2322expimpd 629 . . . . . . 7 (𝑏 ∈ (ℤ𝐴) → ((𝐴 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2423ancomsd 470 . . . . . 6 (𝑏 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
25 sstr2 3610 . . . . . . 7 ((𝐹𝐴) ⊆ (𝐹𝑏) → ((𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1)) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
2625com12 32 . . . . . 6 ((𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1)) → ((𝐹𝐴) ⊆ (𝐹𝑏) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
2724, 26syl6 35 . . . . 5 (𝑏 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → ((𝐹𝐴) ⊆ (𝐹𝑏) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
2827a2d 29 . . . 4 (𝑏 ∈ (ℤ𝐴) → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑏)) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
293, 6, 9, 12, 14, 28uzind4 11746 . . 3 (𝐵 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐵)))
3029com12 32 . 2 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐵 ∈ (ℤ𝐴) → (𝐹𝐴) ⊆ (𝐹𝐵)))
31303impia 1261 1 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0𝐵 ∈ (ℤ𝐴)) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wss 3574  cfv 5888  (class class class)co 6650  1c1 9937   + caddc 9939  0cn0 11292  cz 11377  cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  nacsfix  37275
  Copyright terms: Public domain W3C validator