Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nacsfix Structured version   Visualization version   GIF version

Theorem nacsfix 37275
Description: An increasing sequence of closed sets in a Noetherian-type closure system eventually fixates. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
nacsfix ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0𝑧 ∈ (ℤ𝑦)(𝐹𝑧) = (𝐹𝑦))
Distinct variable groups:   𝑧,𝐶,𝑦   𝑦,𝐹,𝑧   𝑧,𝑋,𝑦   𝑥,𝑦,𝑧,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝑋(𝑥)

Proof of Theorem nacsfix
Dummy variables 𝑎 𝑏 𝑐 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6217 . . . . 5 (𝐹𝑧) ⊆ ran 𝐹
2 simplrr 801 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) = ran 𝐹)
31, 2syl5sseqr 3654 . . . 4 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑧) ⊆ (𝐹𝑦))
4 simpll3 1102 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)))
5 simplrl 800 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → 𝑦 ∈ ℕ0)
6 simpr 477 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → 𝑧 ∈ (ℤ𝑦))
7 incssnn0 37274 . . . . 5 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑦 ∈ ℕ0𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) ⊆ (𝐹𝑧))
84, 5, 6, 7syl3anc 1326 . . . 4 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) ⊆ (𝐹𝑧))
93, 8eqssd 3620 . . 3 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑧) = (𝐹𝑦))
109ralrimiva 2966 . 2 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) → ∀𝑧 ∈ (ℤ𝑦)(𝐹𝑧) = (𝐹𝑦))
11 frn 6053 . . . . . . . 8 (𝐹:ℕ0𝐶 → ran 𝐹𝐶)
12113ad2ant2 1083 . . . . . . 7 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹𝐶)
13 elpw2g 4827 . . . . . . . 8 (𝐶 ∈ (NoeACS‘𝑋) → (ran 𝐹 ∈ 𝒫 𝐶 ↔ ran 𝐹𝐶))
14133ad2ant1 1082 . . . . . . 7 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (ran 𝐹 ∈ 𝒫 𝐶 ↔ ran 𝐹𝐶))
1512, 14mpbird 247 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ∈ 𝒫 𝐶)
16 elex 3212 . . . . . 6 (ran 𝐹 ∈ 𝒫 𝐶 → ran 𝐹 ∈ V)
1715, 16syl 17 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ∈ V)
18 ffn 6045 . . . . . . . 8 (𝐹:ℕ0𝐶𝐹 Fn ℕ0)
19183ad2ant2 1083 . . . . . . 7 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → 𝐹 Fn ℕ0)
20 0nn0 11307 . . . . . . 7 0 ∈ ℕ0
21 fnfvelrn 6356 . . . . . . 7 ((𝐹 Fn ℕ0 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ ran 𝐹)
2219, 20, 21sylancl 694 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (𝐹‘0) ∈ ran 𝐹)
23 ne0i 3921 . . . . . 6 ((𝐹‘0) ∈ ran 𝐹 → ran 𝐹 ≠ ∅)
2422, 23syl 17 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ≠ ∅)
25 nn0re 11301 . . . . . . . . 9 (𝑎 ∈ ℕ0𝑎 ∈ ℝ)
2625ad2antrl 764 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → 𝑎 ∈ ℝ)
27 nn0re 11301 . . . . . . . . 9 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
2827ad2antll 765 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → 𝑏 ∈ ℝ)
29 simplrr 801 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → 𝑏 ∈ ℕ0)
30 simpll3 1102 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)))
31 simplrl 800 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → 𝑎 ∈ ℕ0)
32 nn0z 11400 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℕ0𝑎 ∈ ℤ)
33 nn0z 11400 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
34 eluz 11701 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑏 ∈ (ℤ𝑎) ↔ 𝑎𝑏))
3532, 33, 34syl2an 494 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑏 ∈ (ℤ𝑎) ↔ 𝑎𝑏))
3635biimpar 502 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑎𝑏) → 𝑏 ∈ (ℤ𝑎))
3736adantll 750 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → 𝑏 ∈ (ℤ𝑎))
38 incssnn0 37274 . . . . . . . . . . . 12 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑎 ∈ ℕ0𝑏 ∈ (ℤ𝑎)) → (𝐹𝑎) ⊆ (𝐹𝑏))
3930, 31, 37, 38syl3anc 1326 . . . . . . . . . . 11 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → (𝐹𝑎) ⊆ (𝐹𝑏))
40 ssequn1 3783 . . . . . . . . . . 11 ((𝐹𝑎) ⊆ (𝐹𝑏) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑏))
4139, 40sylib 208 . . . . . . . . . 10 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑏))
42 eqimss 3657 . . . . . . . . . 10 (((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑏) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏))
4341, 42syl 17 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏))
44 fveq2 6191 . . . . . . . . . . 11 (𝑐 = 𝑏 → (𝐹𝑐) = (𝐹𝑏))
4544sseq2d 3633 . . . . . . . . . 10 (𝑐 = 𝑏 → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏)))
4645rspcev 3309 . . . . . . . . 9 ((𝑏 ∈ ℕ0 ∧ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏)) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
4729, 43, 46syl2anc 693 . . . . . . . 8 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
48 simplrl 800 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → 𝑎 ∈ ℕ0)
49 simpll3 1102 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)))
50 simplrr 801 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → 𝑏 ∈ ℕ0)
51 eluz 11701 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝑎 ∈ (ℤ𝑏) ↔ 𝑏𝑎))
5233, 32, 51syl2anr 495 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑎 ∈ (ℤ𝑏) ↔ 𝑏𝑎))
5352biimpar 502 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑏𝑎) → 𝑎 ∈ (ℤ𝑏))
5453adantll 750 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → 𝑎 ∈ (ℤ𝑏))
55 incssnn0 37274 . . . . . . . . . . . 12 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑏 ∈ ℕ0𝑎 ∈ (ℤ𝑏)) → (𝐹𝑏) ⊆ (𝐹𝑎))
5649, 50, 54, 55syl3anc 1326 . . . . . . . . . . 11 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → (𝐹𝑏) ⊆ (𝐹𝑎))
57 ssequn2 3786 . . . . . . . . . . 11 ((𝐹𝑏) ⊆ (𝐹𝑎) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑎))
5856, 57sylib 208 . . . . . . . . . 10 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑎))
59 eqimss 3657 . . . . . . . . . 10 (((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑎) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎))
6058, 59syl 17 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎))
61 fveq2 6191 . . . . . . . . . . 11 (𝑐 = 𝑎 → (𝐹𝑐) = (𝐹𝑎))
6261sseq2d 3633 . . . . . . . . . 10 (𝑐 = 𝑎 → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎)))
6362rspcev 3309 . . . . . . . . 9 ((𝑎 ∈ ℕ0 ∧ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎)) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
6448, 60, 63syl2anc 693 . . . . . . . 8 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
6526, 28, 47, 64lecasei 10143 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
6665ralrimivva 2971 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
67 uneq1 3760 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑎) → (𝑦𝑧) = ((𝐹𝑎) ∪ 𝑧))
6867sseq1d 3632 . . . . . . . . . . 11 (𝑦 = (𝐹𝑎) → ((𝑦𝑧) ⊆ 𝑤 ↔ ((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
6968rexbidv 3052 . . . . . . . . . 10 (𝑦 = (𝐹𝑎) → (∃𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
7069ralbidv 2986 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
7170ralrn 6362 . . . . . . . 8 (𝐹 Fn ℕ0 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
72 uneq2 3761 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑏) → ((𝐹𝑎) ∪ 𝑧) = ((𝐹𝑎) ∪ (𝐹𝑏)))
7372sseq1d 3632 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑏) → (((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤))
7473rexbidv 3052 . . . . . . . . . . 11 (𝑧 = (𝐹𝑏) → (∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤))
7574ralrn 6362 . . . . . . . . . 10 (𝐹 Fn ℕ0 → (∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤))
76 sseq2 3627 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑐) → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7776rexrn 6361 . . . . . . . . . . 11 (𝐹 Fn ℕ0 → (∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤 ↔ ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7877ralbidv 2986 . . . . . . . . . 10 (𝐹 Fn ℕ0 → (∀𝑏 ∈ ℕ0𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7975, 78bitrd 268 . . . . . . . . 9 (𝐹 Fn ℕ0 → (∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8079ralbidv 2986 . . . . . . . 8 (𝐹 Fn ℕ0 → (∀𝑎 ∈ ℕ0𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8171, 80bitrd 268 . . . . . . 7 (𝐹 Fn ℕ0 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8219, 81syl 17 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8366, 82mpbird 247 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤)
84 isipodrs 17161 . . . . 5 ((toInc‘ran 𝐹) ∈ Dirset ↔ (ran 𝐹 ∈ V ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤))
8517, 24, 83, 84syl3anbrc 1246 . . . 4 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (toInc‘ran 𝐹) ∈ Dirset)
86 isnacs3 37273 . . . . . . 7 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦)))
8786simprbi 480 . . . . . 6 (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦))
88873ad2ant1 1082 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦))
89 fveq2 6191 . . . . . . . 8 (𝑦 = ran 𝐹 → (toInc‘𝑦) = (toInc‘ran 𝐹))
9089eleq1d 2686 . . . . . . 7 (𝑦 = ran 𝐹 → ((toInc‘𝑦) ∈ Dirset ↔ (toInc‘ran 𝐹) ∈ Dirset))
91 unieq 4444 . . . . . . . 8 (𝑦 = ran 𝐹 𝑦 = ran 𝐹)
92 id 22 . . . . . . . 8 (𝑦 = ran 𝐹𝑦 = ran 𝐹)
9391, 92eleq12d 2695 . . . . . . 7 (𝑦 = ran 𝐹 → ( 𝑦𝑦 ran 𝐹 ∈ ran 𝐹))
9490, 93imbi12d 334 . . . . . 6 (𝑦 = ran 𝐹 → (((toInc‘𝑦) ∈ Dirset → 𝑦𝑦) ↔ ((toInc‘ran 𝐹) ∈ Dirset → ran 𝐹 ∈ ran 𝐹)))
9594rspcva 3307 . . . . 5 ((ran 𝐹 ∈ 𝒫 𝐶 ∧ ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦)) → ((toInc‘ran 𝐹) ∈ Dirset → ran 𝐹 ∈ ran 𝐹))
9615, 88, 95syl2anc 693 . . . 4 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ((toInc‘ran 𝐹) ∈ Dirset → ran 𝐹 ∈ ran 𝐹))
9785, 96mpd 15 . . 3 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ∈ ran 𝐹)
98 fvelrnb 6243 . . . 4 (𝐹 Fn ℕ0 → ( ran 𝐹 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ℕ0 (𝐹𝑦) = ran 𝐹))
9919, 98syl 17 . . 3 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ( ran 𝐹 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ℕ0 (𝐹𝑦) = ran 𝐹))
10097, 99mpbid 222 . 2 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0 (𝐹𝑦) = ran 𝐹)
10110, 100reximddv 3018 1 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0𝑧 ∈ (ℤ𝑦)(𝐹𝑧) = (𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cun 3572  wss 3574  c0 3915  𝒫 cpw 4158   cuni 4436   class class class wbr 4653  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  0cn0 11292  cz 11377  cuz 11687  Moorecmre 16242  Dirsetcdrs 16927  toInccipo 17151  NoeACScnacs 37265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-tset 15960  df-ple 15961  df-ocomp 15963  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-drs 16929  df-poset 16946  df-ipo 17152  df-nacs 37266
This theorem is referenced by:  hbt  37700
  Copyright terms: Public domain W3C validator