![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inffien | Structured version Visualization version GIF version |
Description: The set of finite intersections of an infinite well-orderable set is equinumerous to the set itself. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
inffien | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infpwfien 8885 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴) | |
2 | relen 7960 | . . . . . . . . 9 ⊢ Rel ≈ | |
3 | 2 | brrelexi 5158 | . . . . . . . 8 ⊢ ((𝒫 𝐴 ∩ Fin) ≈ 𝐴 → (𝒫 𝐴 ∩ Fin) ∈ V) |
4 | 1, 3 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ∈ V) |
5 | difss 3737 | . . . . . . 7 ⊢ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin) | |
6 | ssdomg 8001 | . . . . . . 7 ⊢ ((𝒫 𝐴 ∩ Fin) ∈ V → (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin))) | |
7 | 4, 5, 6 | mpisyl 21 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin)) |
8 | domentr 8015 | . . . . . 6 ⊢ ((((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≈ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) | |
9 | 7, 1, 8 | syl2anc 693 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) |
10 | numdom 8861 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card) | |
11 | 9, 10 | syldan 487 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card) |
12 | eqid 2622 | . . . . . 6 ⊢ (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥) = (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥) | |
13 | 12 | fifo 8338 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
14 | 13 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
15 | fodomnum 8880 | . . . 4 ⊢ (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card → ((𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}))) | |
16 | 11, 14, 15 | sylc 65 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅})) |
17 | domtr 8009 | . . 3 ⊢ (((fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) → (fi‘𝐴) ≼ 𝐴) | |
18 | 16, 9, 17 | syl2anc 693 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≼ 𝐴) |
19 | fvex 6201 | . . 3 ⊢ (fi‘𝐴) ∈ V | |
20 | ssfii 8325 | . . . 4 ⊢ (𝐴 ∈ dom card → 𝐴 ⊆ (fi‘𝐴)) | |
21 | 20 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ⊆ (fi‘𝐴)) |
22 | ssdomg 8001 | . . 3 ⊢ ((fi‘𝐴) ∈ V → (𝐴 ⊆ (fi‘𝐴) → 𝐴 ≼ (fi‘𝐴))) | |
23 | 19, 21, 22 | mpsyl 68 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (fi‘𝐴)) |
24 | sbth 8080 | . 2 ⊢ (((fi‘𝐴) ≼ 𝐴 ∧ 𝐴 ≼ (fi‘𝐴)) → (fi‘𝐴) ≈ 𝐴) | |
25 | 18, 23, 24 | syl2anc 693 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 Vcvv 3200 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 {csn 4177 ∩ cint 4475 class class class wbr 4653 ↦ cmpt 4729 dom cdm 5114 –onto→wfo 5886 ‘cfv 5888 ωcom 7065 ≈ cen 7952 ≼ cdom 7953 Fincfn 7955 ficfi 8316 cardccrd 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seqom 7543 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-oi 8415 df-card 8765 df-acn 8768 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |