MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inffien Structured version   Visualization version   Unicode version

Theorem inffien 8886
Description: The set of finite intersections of an infinite well-orderable set is equinumerous to the set itself. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
inffien  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( fi `  A
)  ~~  A )

Proof of Theorem inffien
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 infpwfien 8885 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ~P A  i^i  Fin )  ~~  A )
2 relen 7960 . . . . . . . . 9  |-  Rel  ~~
32brrelexi 5158 . . . . . . . 8  |-  ( ( ~P A  i^i  Fin )  ~~  A  ->  ( ~P A  i^i  Fin )  e.  _V )
41, 3syl 17 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ~P A  i^i  Fin )  e.  _V )
5 difss 3737 . . . . . . 7  |-  ( ( ~P A  i^i  Fin )  \  { (/) } ) 
C_  ( ~P A  i^i  Fin )
6 ssdomg 8001 . . . . . . 7  |-  ( ( ~P A  i^i  Fin )  e.  _V  ->  ( ( ( ~P A  i^i  Fin )  \  { (/)
} )  C_  ( ~P A  i^i  Fin )  ->  ( ( ~P A  i^i  Fin )  \  { (/)
} )  ~<_  ( ~P A  i^i  Fin )
) )
74, 5, 6mpisyl 21 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ( ~P A  i^i  Fin )  \  { (/)
} )  ~<_  ( ~P A  i^i  Fin )
)
8 domentr 8015 . . . . . 6  |-  ( ( ( ( ~P A  i^i  Fin )  \  { (/)
} )  ~<_  ( ~P A  i^i  Fin )  /\  ( ~P A  i^i  Fin )  ~~  A )  ->  ( ( ~P A  i^i  Fin )  \  { (/) } )  ~<_  A )
97, 1, 8syl2anc 693 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ( ~P A  i^i  Fin )  \  { (/)
} )  ~<_  A )
10 numdom 8861 . . . . 5  |-  ( ( A  e.  dom  card  /\  ( ( ~P A  i^i  Fin )  \  { (/)
} )  ~<_  A )  ->  ( ( ~P A  i^i  Fin )  \  { (/) } )  e. 
dom  card )
119, 10syldan 487 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ( ~P A  i^i  Fin )  \  { (/)
} )  e.  dom  card )
12 eqid 2622 . . . . . 6  |-  ( x  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  |->  |^| x )  =  ( x  e.  ( ( ~P A  i^i  Fin )  \  { (/) } ) 
|->  |^| x )
1312fifo 8338 . . . . 5  |-  ( A  e.  dom  card  ->  ( x  e.  ( ( ~P A  i^i  Fin )  \  { (/) } ) 
|->  |^| x ) : ( ( ~P A  i^i  Fin )  \  { (/)
} ) -onto-> ( fi
`  A ) )
1413adantr 481 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( x  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  |->  |^| x ) : ( ( ~P A  i^i  Fin )  \  { (/)
} ) -onto-> ( fi
`  A ) )
15 fodomnum 8880 . . . 4  |-  ( ( ( ~P A  i^i  Fin )  \  { (/) } )  e.  dom  card  -> 
( ( x  e.  ( ( ~P A  i^i  Fin )  \  { (/)
} )  |->  |^| x
) : ( ( ~P A  i^i  Fin )  \  { (/) } )
-onto-> ( fi `  A
)  ->  ( fi `  A )  ~<_  ( ( ~P A  i^i  Fin )  \  { (/) } ) ) )
1611, 14, 15sylc 65 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( fi `  A
)  ~<_  ( ( ~P A  i^i  Fin )  \  { (/) } ) )
17 domtr 8009 . . 3  |-  ( ( ( fi `  A
)  ~<_  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  ( ( ~P A  i^i  Fin )  \  { (/)
} )  ~<_  A )  ->  ( fi `  A )  ~<_  A )
1816, 9, 17syl2anc 693 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( fi `  A
)  ~<_  A )
19 fvex 6201 . . 3  |-  ( fi
`  A )  e. 
_V
20 ssfii 8325 . . . 4  |-  ( A  e.  dom  card  ->  A 
C_  ( fi `  A ) )
2120adantr 481 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  A  C_  ( fi `  A ) )
22 ssdomg 8001 . . 3  |-  ( ( fi `  A )  e.  _V  ->  ( A  C_  ( fi `  A )  ->  A  ~<_  ( fi `  A ) ) )
2319, 21, 22mpsyl 68 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  A  ~<_  ( fi `  A ) )
24 sbth 8080 . 2  |-  ( ( ( fi `  A
)  ~<_  A  /\  A  ~<_  ( fi `  A ) )  ->  ( fi `  A )  ~~  A
)
2518, 23, 24syl2anc 693 1  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( fi `  A
)  ~~  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   |^|cint 4475   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   -onto->wfo 5886   ` cfv 5888   omcom 7065    ~~ cen 7952    ~<_ cdom 7953   Fincfn 7955   ficfi 8316   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-oi 8415  df-card 8765  df-acn 8768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator