| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infxpenc2lem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for infxpenc2 8845. (Contributed by Mario Carneiro, 30-May-2015.) |
| Ref | Expression |
|---|---|
| infxpenc2.1 |
|
| infxpenc2.2 |
|
| infxpenc2.3 |
|
| Ref | Expression |
|---|---|
| infxpenc2lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxpenc2.2 |
. . . 4
| |
| 2 | 1 | r19.21bi 2932 |
. . 3
|
| 3 | 2 | impr 649 |
. 2
|
| 4 | simpr 477 |
. . 3
| |
| 5 | infxpenc2.3 |
. . . . . 6
| |
| 6 | oveq2 6658 |
. . . . . . . . . 10
| |
| 7 | eqid 2622 |
. . . . . . . . . 10
| |
| 8 | ovex 6678 |
. . . . . . . . . 10
| |
| 9 | 6, 7, 8 | fvmpt 6282 |
. . . . . . . . 9
|
| 10 | 9 | ad2antrl 764 |
. . . . . . . 8
|
| 11 | f1ofo 6144 |
. . . . . . . . . 10
| |
| 12 | 11 | ad2antll 765 |
. . . . . . . . 9
|
| 13 | forn 6118 |
. . . . . . . . 9
| |
| 14 | 12, 13 | syl 17 |
. . . . . . . 8
|
| 15 | 10, 14 | eqtr4d 2659 |
. . . . . . 7
|
| 16 | ovex 6678 |
. . . . . . . . . . 11
| |
| 17 | 16 | 2a1i 12 |
. . . . . . . . . 10
|
| 18 | omelon 8543 |
. . . . . . . . . . . . . 14
| |
| 19 | 1onn 7719 |
. . . . . . . . . . . . . 14
| |
| 20 | ondif2 7582 |
. . . . . . . . . . . . . 14
| |
| 21 | 18, 19, 20 | mpbir2an 955 |
. . . . . . . . . . . . 13
|
| 22 | 21 | a1i 11 |
. . . . . . . . . . . 12
|
| 23 | eldifi 3732 |
. . . . . . . . . . . . 13
| |
| 24 | 23 | ad2antrl 764 |
. . . . . . . . . . . 12
|
| 25 | eldifi 3732 |
. . . . . . . . . . . . 13
| |
| 26 | 25 | ad2antll 765 |
. . . . . . . . . . . 12
|
| 27 | oecan 7669 |
. . . . . . . . . . . 12
| |
| 28 | 22, 24, 26, 27 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 29 | 28 | ex 450 |
. . . . . . . . . 10
|
| 30 | 17, 29 | dom2lem 7995 |
. . . . . . . . 9
|
| 31 | f1f1orn 6148 |
. . . . . . . . 9
| |
| 32 | 30, 31 | syl 17 |
. . . . . . . 8
|
| 33 | simprl 794 |
. . . . . . . 8
| |
| 34 | f1ocnvfv 6534 |
. . . . . . . 8
| |
| 35 | 32, 33, 34 | syl2anc 693 |
. . . . . . 7
|
| 36 | 15, 35 | mpd 15 |
. . . . . 6
|
| 37 | 5, 36 | syl5eq 2668 |
. . . . 5
|
| 38 | 37 | eleq1d 2686 |
. . . 4
|
| 39 | 37 | oveq2d 6666 |
. . . . 5
|
| 40 | f1oeq3 6129 |
. . . . 5
| |
| 41 | 39, 40 | syl 17 |
. . . 4
|
| 42 | 38, 41 | anbi12d 747 |
. . 3
|
| 43 | 4, 42 | mpbird 247 |
. 2
|
| 44 | 3, 43 | rexlimddv 3035 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-oexp 7566 |
| This theorem is referenced by: infxpenc2lem2 8843 |
| Copyright terms: Public domain | W3C validator |