MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc Structured version   Visualization version   GIF version

Theorem infxpenc 8841
Description: A canonical version of infxpen 8837, by a completely different approach (although it uses infxpen 8837 via xpomen 8838). Using Cantor's normal form, we can show that 𝐴𝑜 𝐵 respects equinumerosity (oef1o 8595), so that all the steps of (ω↑𝑊) · (ω↑𝑊) ≈ ω↑(2𝑊) ≈ (ω↑2)↑𝑊 ≈ ω↑𝑊 can be verified using bijections to do the ordinal commutations. (The assumption on 𝑁 can be satisfied using cnfcom3c 8603.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
infxpenc.1 (𝜑𝐴 ∈ On)
infxpenc.2 (𝜑 → ω ⊆ 𝐴)
infxpenc.3 (𝜑𝑊 ∈ (On ∖ 1𝑜))
infxpenc.4 (𝜑𝐹:(ω ↑𝑜 2𝑜)–1-1-onto→ω)
infxpenc.5 (𝜑 → (𝐹‘∅) = ∅)
infxpenc.6 (𝜑𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊))
infxpenc.k 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑𝑜 2𝑜) ↑𝑚 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))
infxpenc.h 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ((ω ↑𝑜 2𝑜) CNF 𝑊))
infxpenc.l 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑𝑚 (𝑊 ·𝑜 2𝑜)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦(𝑌𝑋))))
infxpenc.x 𝑋 = (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((𝑊 ·𝑜 𝑧) +𝑜 𝑤))
infxpenc.y 𝑌 = (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((2𝑜 ·𝑜 𝑤) +𝑜 𝑧))
infxpenc.j 𝐽 = (((ω CNF (2𝑜 ·𝑜 𝑊)) ∘ 𝐿) ∘ (ω CNF (𝑊 ·𝑜 2𝑜)))
infxpenc.z 𝑍 = (𝑥 ∈ (ω ↑𝑜 𝑊), 𝑦 ∈ (ω ↑𝑜 𝑊) ↦ (((ω ↑𝑜 𝑊) ·𝑜 𝑥) +𝑜 𝑦))
infxpenc.t 𝑇 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩)
infxpenc.g 𝐺 = (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇))
Assertion
Ref Expression
infxpenc (𝜑𝐺:(𝐴 × 𝐴)–1-1-onto𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑤,𝑦,𝑧,𝑊   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐴(𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑥,𝑦,𝑧,𝑤)   𝐽(𝑥,𝑦,𝑧,𝑤)   𝐾(𝑥,𝑦,𝑧,𝑤)   𝐿(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑧,𝑤)   𝑋(𝑧,𝑤)   𝑌(𝑧,𝑤)   𝑍(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem infxpenc
StepHypRef Expression
1 infxpenc.6 . . . 4 (𝜑𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊))
2 f1ocnv 6149 . . . 4 (𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊) → 𝑁:(ω ↑𝑜 𝑊)–1-1-onto𝐴)
31, 2syl 17 . . 3 (𝜑𝑁:(ω ↑𝑜 𝑊)–1-1-onto𝐴)
4 infxpenc.4 . . . . . . . 8 (𝜑𝐹:(ω ↑𝑜 2𝑜)–1-1-onto→ω)
5 f1oi 6174 . . . . . . . . 9 ( I ↾ 𝑊):𝑊1-1-onto𝑊
65a1i 11 . . . . . . . 8 (𝜑 → ( I ↾ 𝑊):𝑊1-1-onto𝑊)
7 omelon 8543 . . . . . . . . . . 11 ω ∈ On
87a1i 11 . . . . . . . . . 10 (𝜑 → ω ∈ On)
9 2on 7568 . . . . . . . . . 10 2𝑜 ∈ On
10 oecl 7617 . . . . . . . . . 10 ((ω ∈ On ∧ 2𝑜 ∈ On) → (ω ↑𝑜 2𝑜) ∈ On)
118, 9, 10sylancl 694 . . . . . . . . 9 (𝜑 → (ω ↑𝑜 2𝑜) ∈ On)
129a1i 11 . . . . . . . . . 10 (𝜑 → 2𝑜 ∈ On)
13 peano1 7085 . . . . . . . . . . 11 ∅ ∈ ω
1413a1i 11 . . . . . . . . . 10 (𝜑 → ∅ ∈ ω)
15 oen0 7666 . . . . . . . . . 10 (((ω ∈ On ∧ 2𝑜 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑𝑜 2𝑜))
168, 12, 14, 15syl21anc 1325 . . . . . . . . 9 (𝜑 → ∅ ∈ (ω ↑𝑜 2𝑜))
17 ondif1 7581 . . . . . . . . 9 ((ω ↑𝑜 2𝑜) ∈ (On ∖ 1𝑜) ↔ ((ω ↑𝑜 2𝑜) ∈ On ∧ ∅ ∈ (ω ↑𝑜 2𝑜)))
1811, 16, 17sylanbrc 698 . . . . . . . 8 (𝜑 → (ω ↑𝑜 2𝑜) ∈ (On ∖ 1𝑜))
19 infxpenc.3 . . . . . . . . 9 (𝜑𝑊 ∈ (On ∖ 1𝑜))
2019eldifad 3586 . . . . . . . 8 (𝜑𝑊 ∈ On)
21 infxpenc.5 . . . . . . . 8 (𝜑 → (𝐹‘∅) = ∅)
22 infxpenc.k . . . . . . . 8 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑𝑜 2𝑜) ↑𝑚 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))
23 infxpenc.h . . . . . . . 8 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ((ω ↑𝑜 2𝑜) CNF 𝑊))
244, 6, 18, 20, 8, 20, 21, 22, 23oef1o 8595 . . . . . . 7 (𝜑𝐻:((ω ↑𝑜 2𝑜) ↑𝑜 𝑊)–1-1-onto→(ω ↑𝑜 𝑊))
25 f1oi 6174 . . . . . . . . . 10 ( I ↾ ω):ω–1-1-onto→ω
2625a1i 11 . . . . . . . . 9 (𝜑 → ( I ↾ ω):ω–1-1-onto→ω)
27 infxpenc.x . . . . . . . . . . 11 𝑋 = (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((𝑊 ·𝑜 𝑧) +𝑜 𝑤))
28 infxpenc.y . . . . . . . . . . 11 𝑌 = (𝑧 ∈ 2𝑜, 𝑤𝑊 ↦ ((2𝑜 ·𝑜 𝑤) +𝑜 𝑧))
2927, 28omf1o 8063 . . . . . . . . . 10 ((𝑊 ∈ On ∧ 2𝑜 ∈ On) → (𝑌𝑋):(𝑊 ·𝑜 2𝑜)–1-1-onto→(2𝑜 ·𝑜 𝑊))
3020, 9, 29sylancl 694 . . . . . . . . 9 (𝜑 → (𝑌𝑋):(𝑊 ·𝑜 2𝑜)–1-1-onto→(2𝑜 ·𝑜 𝑊))
31 ondif1 7581 . . . . . . . . . . 11 (ω ∈ (On ∖ 1𝑜) ↔ (ω ∈ On ∧ ∅ ∈ ω))
327, 13, 31mpbir2an 955 . . . . . . . . . 10 ω ∈ (On ∖ 1𝑜)
3332a1i 11 . . . . . . . . 9 (𝜑 → ω ∈ (On ∖ 1𝑜))
34 omcl 7616 . . . . . . . . . 10 ((𝑊 ∈ On ∧ 2𝑜 ∈ On) → (𝑊 ·𝑜 2𝑜) ∈ On)
3520, 9, 34sylancl 694 . . . . . . . . 9 (𝜑 → (𝑊 ·𝑜 2𝑜) ∈ On)
36 omcl 7616 . . . . . . . . . 10 ((2𝑜 ∈ On ∧ 𝑊 ∈ On) → (2𝑜 ·𝑜 𝑊) ∈ On)
3712, 20, 36syl2anc 693 . . . . . . . . 9 (𝜑 → (2𝑜 ·𝑜 𝑊) ∈ On)
38 fvresi 6439 . . . . . . . . . 10 (∅ ∈ ω → (( I ↾ ω)‘∅) = ∅)
3913, 38mp1i 13 . . . . . . . . 9 (𝜑 → (( I ↾ ω)‘∅) = ∅)
40 infxpenc.l . . . . . . . . 9 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑𝑚 (𝑊 ·𝑜 2𝑜)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦(𝑌𝑋))))
41 infxpenc.j . . . . . . . . 9 𝐽 = (((ω CNF (2𝑜 ·𝑜 𝑊)) ∘ 𝐿) ∘ (ω CNF (𝑊 ·𝑜 2𝑜)))
4226, 30, 33, 35, 8, 37, 39, 40, 41oef1o 8595 . . . . . . . 8 (𝜑𝐽:(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→(ω ↑𝑜 (2𝑜 ·𝑜 𝑊)))
43 oeoe 7679 . . . . . . . . . 10 ((ω ∈ On ∧ 2𝑜 ∈ On ∧ 𝑊 ∈ On) → ((ω ↑𝑜 2𝑜) ↑𝑜 𝑊) = (ω ↑𝑜 (2𝑜 ·𝑜 𝑊)))
448, 12, 20, 43syl3anc 1326 . . . . . . . . 9 (𝜑 → ((ω ↑𝑜 2𝑜) ↑𝑜 𝑊) = (ω ↑𝑜 (2𝑜 ·𝑜 𝑊)))
45 f1oeq3 6129 . . . . . . . . 9 (((ω ↑𝑜 2𝑜) ↑𝑜 𝑊) = (ω ↑𝑜 (2𝑜 ·𝑜 𝑊)) → (𝐽:(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→((ω ↑𝑜 2𝑜) ↑𝑜 𝑊) ↔ 𝐽:(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→(ω ↑𝑜 (2𝑜 ·𝑜 𝑊))))
4644, 45syl 17 . . . . . . . 8 (𝜑 → (𝐽:(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→((ω ↑𝑜 2𝑜) ↑𝑜 𝑊) ↔ 𝐽:(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→(ω ↑𝑜 (2𝑜 ·𝑜 𝑊))))
4742, 46mpbird 247 . . . . . . 7 (𝜑𝐽:(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→((ω ↑𝑜 2𝑜) ↑𝑜 𝑊))
48 f1oco 6159 . . . . . . 7 ((𝐻:((ω ↑𝑜 2𝑜) ↑𝑜 𝑊)–1-1-onto→(ω ↑𝑜 𝑊) ∧ 𝐽:(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→((ω ↑𝑜 2𝑜) ↑𝑜 𝑊)) → (𝐻𝐽):(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→(ω ↑𝑜 𝑊))
4924, 47, 48syl2anc 693 . . . . . 6 (𝜑 → (𝐻𝐽):(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→(ω ↑𝑜 𝑊))
50 df-2o 7561 . . . . . . . . . . . 12 2𝑜 = suc 1𝑜
5150oveq2i 6661 . . . . . . . . . . 11 (𝑊 ·𝑜 2𝑜) = (𝑊 ·𝑜 suc 1𝑜)
52 1on 7567 . . . . . . . . . . . 12 1𝑜 ∈ On
53 omsuc 7606 . . . . . . . . . . . 12 ((𝑊 ∈ On ∧ 1𝑜 ∈ On) → (𝑊 ·𝑜 suc 1𝑜) = ((𝑊 ·𝑜 1𝑜) +𝑜 𝑊))
5420, 52, 53sylancl 694 . . . . . . . . . . 11 (𝜑 → (𝑊 ·𝑜 suc 1𝑜) = ((𝑊 ·𝑜 1𝑜) +𝑜 𝑊))
5551, 54syl5eq 2668 . . . . . . . . . 10 (𝜑 → (𝑊 ·𝑜 2𝑜) = ((𝑊 ·𝑜 1𝑜) +𝑜 𝑊))
56 om1 7622 . . . . . . . . . . . 12 (𝑊 ∈ On → (𝑊 ·𝑜 1𝑜) = 𝑊)
5720, 56syl 17 . . . . . . . . . . 11 (𝜑 → (𝑊 ·𝑜 1𝑜) = 𝑊)
5857oveq1d 6665 . . . . . . . . . 10 (𝜑 → ((𝑊 ·𝑜 1𝑜) +𝑜 𝑊) = (𝑊 +𝑜 𝑊))
5955, 58eqtrd 2656 . . . . . . . . 9 (𝜑 → (𝑊 ·𝑜 2𝑜) = (𝑊 +𝑜 𝑊))
6059oveq2d 6666 . . . . . . . 8 (𝜑 → (ω ↑𝑜 (𝑊 ·𝑜 2𝑜)) = (ω ↑𝑜 (𝑊 +𝑜 𝑊)))
61 oeoa 7677 . . . . . . . . 9 ((ω ∈ On ∧ 𝑊 ∈ On ∧ 𝑊 ∈ On) → (ω ↑𝑜 (𝑊 +𝑜 𝑊)) = ((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊)))
628, 20, 20, 61syl3anc 1326 . . . . . . . 8 (𝜑 → (ω ↑𝑜 (𝑊 +𝑜 𝑊)) = ((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊)))
6360, 62eqtrd 2656 . . . . . . 7 (𝜑 → (ω ↑𝑜 (𝑊 ·𝑜 2𝑜)) = ((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊)))
64 f1oeq2 6128 . . . . . . 7 ((ω ↑𝑜 (𝑊 ·𝑜 2𝑜)) = ((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊)) → ((𝐻𝐽):(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝐻𝐽):((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊))–1-1-onto→(ω ↑𝑜 𝑊)))
6563, 64syl 17 . . . . . 6 (𝜑 → ((𝐻𝐽):(ω ↑𝑜 (𝑊 ·𝑜 2𝑜))–1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝐻𝐽):((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊))–1-1-onto→(ω ↑𝑜 𝑊)))
6649, 65mpbid 222 . . . . 5 (𝜑 → (𝐻𝐽):((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊))–1-1-onto→(ω ↑𝑜 𝑊))
67 oecl 7617 . . . . . . 7 ((ω ∈ On ∧ 𝑊 ∈ On) → (ω ↑𝑜 𝑊) ∈ On)
688, 20, 67syl2anc 693 . . . . . 6 (𝜑 → (ω ↑𝑜 𝑊) ∈ On)
69 infxpenc.z . . . . . . 7 𝑍 = (𝑥 ∈ (ω ↑𝑜 𝑊), 𝑦 ∈ (ω ↑𝑜 𝑊) ↦ (((ω ↑𝑜 𝑊) ·𝑜 𝑥) +𝑜 𝑦))
7069omxpenlem 8061 . . . . . 6 (((ω ↑𝑜 𝑊) ∈ On ∧ (ω ↑𝑜 𝑊) ∈ On) → 𝑍:((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊)))
7168, 68, 70syl2anc 693 . . . . 5 (𝜑𝑍:((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊)))
72 f1oco 6159 . . . . 5 (((𝐻𝐽):((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊))–1-1-onto→(ω ↑𝑜 𝑊) ∧ 𝑍:((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (ω ↑𝑜 𝑊))) → ((𝐻𝐽) ∘ 𝑍):((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))–1-1-onto→(ω ↑𝑜 𝑊))
7366, 71, 72syl2anc 693 . . . 4 (𝜑 → ((𝐻𝐽) ∘ 𝑍):((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))–1-1-onto→(ω ↑𝑜 𝑊))
74 f1of 6137 . . . . . . . . . 10 (𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊) → 𝑁:𝐴⟶(ω ↑𝑜 𝑊))
751, 74syl 17 . . . . . . . . 9 (𝜑𝑁:𝐴⟶(ω ↑𝑜 𝑊))
7675feqmptd 6249 . . . . . . . 8 (𝜑𝑁 = (𝑥𝐴 ↦ (𝑁𝑥)))
77 f1oeq1 6127 . . . . . . . 8 (𝑁 = (𝑥𝐴 ↦ (𝑁𝑥)) → (𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝑥𝐴 ↦ (𝑁𝑥)):𝐴1-1-onto→(ω ↑𝑜 𝑊)))
7876, 77syl 17 . . . . . . 7 (𝜑 → (𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝑥𝐴 ↦ (𝑁𝑥)):𝐴1-1-onto→(ω ↑𝑜 𝑊)))
791, 78mpbid 222 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝑁𝑥)):𝐴1-1-onto→(ω ↑𝑜 𝑊))
8075feqmptd 6249 . . . . . . . 8 (𝜑𝑁 = (𝑦𝐴 ↦ (𝑁𝑦)))
81 f1oeq1 6127 . . . . . . . 8 (𝑁 = (𝑦𝐴 ↦ (𝑁𝑦)) → (𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝑦𝐴 ↦ (𝑁𝑦)):𝐴1-1-onto→(ω ↑𝑜 𝑊)))
8280, 81syl 17 . . . . . . 7 (𝜑 → (𝑁:𝐴1-1-onto→(ω ↑𝑜 𝑊) ↔ (𝑦𝐴 ↦ (𝑁𝑦)):𝐴1-1-onto→(ω ↑𝑜 𝑊)))
831, 82mpbid 222 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ (𝑁𝑦)):𝐴1-1-onto→(ω ↑𝑜 𝑊))
8479, 83xpf1o 8122 . . . . 5 (𝜑 → (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩):(𝐴 × 𝐴)–1-1-onto→((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊)))
85 infxpenc.t . . . . . 6 𝑇 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩)
86 f1oeq1 6127 . . . . . 6 (𝑇 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩) → (𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊)) ↔ (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩):(𝐴 × 𝐴)–1-1-onto→((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))))
8785, 86ax-mp 5 . . . . 5 (𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊)) ↔ (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝑁𝑥), (𝑁𝑦)⟩):(𝐴 × 𝐴)–1-1-onto→((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊)))
8884, 87sylibr 224 . . . 4 (𝜑𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊)))
89 f1oco 6159 . . . 4 ((((𝐻𝐽) ∘ 𝑍):((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))–1-1-onto→(ω ↑𝑜 𝑊) ∧ 𝑇:(𝐴 × 𝐴)–1-1-onto→((ω ↑𝑜 𝑊) × (ω ↑𝑜 𝑊))) → (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑𝑜 𝑊))
9073, 88, 89syl2anc 693 . . 3 (𝜑 → (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑𝑜 𝑊))
91 f1oco 6159 . . 3 ((𝑁:(ω ↑𝑜 𝑊)–1-1-onto𝐴 ∧ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇):(𝐴 × 𝐴)–1-1-onto→(ω ↑𝑜 𝑊)) → (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴)
923, 90, 91syl2anc 693 . 2 (𝜑 → (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴)
93 infxpenc.g . . 3 𝐺 = (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇))
94 f1oeq1 6127 . . 3 (𝐺 = (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)) → (𝐺:(𝐴 × 𝐴)–1-1-onto𝐴 ↔ (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴))
9593, 94ax-mp 5 . 2 (𝐺:(𝐴 × 𝐴)–1-1-onto𝐴 ↔ (𝑁 ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇)):(𝐴 × 𝐴)–1-1-onto𝐴)
9692, 95sylibr 224 1 (𝜑𝐺:(𝐴 × 𝐴)–1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  {crab 2916  cdif 3571  wss 3574  c0 3915  cop 4183   class class class wbr 4653  cmpt 4729   I cid 5023   × cxp 5112  ccnv 5113  cres 5116  ccom 5118  Oncon0 5723  suc csuc 5725  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  ωcom 7065  1𝑜c1o 7553  2𝑜c2o 7554   +𝑜 coa 7557   ·𝑜 comu 7558  𝑜 coe 7559  𝑚 cmap 7857   finSupp cfsupp 8275   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  infxpenc2lem2  8843
  Copyright terms: Public domain W3C validator