MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zsupss Structured version   Visualization version   GIF version

Theorem zsupss 11777
Description: Any nonempty bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-sup 10014.) (Contributed by Mario Carneiro, 21-Apr-2015.)
Assertion
Ref Expression
zsupss ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑦,𝑧)

Proof of Theorem zsupss
Dummy variables 𝑚 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4656 . . . . . 6 (𝑦 = 𝑚 → (𝑦𝑥𝑚𝑥))
21cbvralv 3171 . . . . 5 (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑚𝐴 𝑚𝑥)
3 breq2 4657 . . . . . 6 (𝑥 = 𝑛 → (𝑚𝑥𝑚𝑛))
43ralbidv 2986 . . . . 5 (𝑥 = 𝑛 → (∀𝑚𝐴 𝑚𝑥 ↔ ∀𝑚𝐴 𝑚𝑛))
52, 4syl5bb 272 . . . 4 (𝑥 = 𝑛 → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑚𝐴 𝑚𝑛))
65cbvrexv 3172 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑛 ∈ ℤ ∀𝑚𝐴 𝑚𝑛)
7 simp1rl 1126 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑛 ∈ ℤ)
87znegcld 11484 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑛 ∈ ℤ)
9 simp2 1062 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ ℤ)
109zred 11482 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ ℝ)
117zred 11482 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑛 ∈ ℝ)
12 simp3 1063 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑤𝐴)
13 simp1rr 1127 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → ∀𝑚𝐴 𝑚𝑛)
14 breq1 4656 . . . . . . . . . . . 12 (𝑚 = -𝑤 → (𝑚𝑛 ↔ -𝑤𝑛))
1514rspcv 3305 . . . . . . . . . . 11 (-𝑤𝐴 → (∀𝑚𝐴 𝑚𝑛 → -𝑤𝑛))
1612, 13, 15sylc 65 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑤𝑛)
1710, 11, 16lenegcon1d 10609 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑛𝑤)
18 eluz2 11693 . . . . . . . . 9 (𝑤 ∈ (ℤ‘-𝑛) ↔ (-𝑛 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ -𝑛𝑤))
198, 9, 17, 18syl3anbrc 1246 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ (ℤ‘-𝑛))
2019rabssdv 3682 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛))
21 n0 3931 . . . . . . . . . 10 (𝐴 ≠ ∅ ↔ ∃𝑛 𝑛𝐴)
22 ssel2 3598 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℤ)
2322znegcld 11484 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → -𝑛 ∈ ℤ)
2422zcnd 11483 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℂ)
2524negnegd 10383 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → --𝑛 = 𝑛)
26 simpr 477 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛𝐴)
2725, 26eqeltrd 2701 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → --𝑛𝐴)
28 negeq 10273 . . . . . . . . . . . . . . . 16 (𝑤 = -𝑛 → -𝑤 = --𝑛)
2928eleq1d 2686 . . . . . . . . . . . . . . 15 (𝑤 = -𝑛 → (-𝑤𝐴 ↔ --𝑛𝐴))
3029rspcev 3309 . . . . . . . . . . . . . 14 ((-𝑛 ∈ ℤ ∧ --𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3123, 27, 30syl2anc 693 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3231ex 450 . . . . . . . . . . . 12 (𝐴 ⊆ ℤ → (𝑛𝐴 → ∃𝑤 ∈ ℤ -𝑤𝐴))
3332exlimdv 1861 . . . . . . . . . . 11 (𝐴 ⊆ ℤ → (∃𝑛 𝑛𝐴 → ∃𝑤 ∈ ℤ -𝑤𝐴))
3433imp 445 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ ∃𝑛 𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3521, 34sylan2b 492 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3635adantr 481 . . . . . . . 8 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∃𝑤 ∈ ℤ -𝑤𝐴)
37 rabn0 3958 . . . . . . . 8 ({𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅ ↔ ∃𝑤 ∈ ℤ -𝑤𝐴)
3836, 37sylibr 224 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅)
39 infssuzcl 11772 . . . . . . 7 (({𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛) ∧ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
4020, 38, 39syl2anc 693 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
41 negeq 10273 . . . . . . . . 9 (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → -𝑛 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ))
4241eleq1d 2686 . . . . . . . 8 (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (-𝑛𝐴 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴))
43 negeq 10273 . . . . . . . . . 10 (𝑤 = 𝑛 → -𝑤 = -𝑛)
4443eleq1d 2686 . . . . . . . . 9 (𝑤 = 𝑛 → (-𝑤𝐴 ↔ -𝑛𝐴))
4544cbvrabv 3199 . . . . . . . 8 {𝑤 ∈ ℤ ∣ -𝑤𝐴} = {𝑛 ∈ ℤ ∣ -𝑛𝐴}
4642, 45elrab2 3366 . . . . . . 7 (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ↔ (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ ∧ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴))
4746simprbi 480 . . . . . 6 (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴)
4840, 47syl 17 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴)
49 ssrab2 3687 . . . . . . . . . 10 {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ ℤ
5040adantr 481 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
5149, 50sseldi 3601 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ)
5251zred 11482 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
53 simpll 790 . . . . . . . . . 10 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → 𝐴 ⊆ ℤ)
5453sselda 3603 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℤ)
5554zred 11482 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
5620adantr 481 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛))
5754znegcld 11484 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -𝑦 ∈ ℤ)
5854zcnd 11483 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℂ)
5958negnegd 10383 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → --𝑦 = 𝑦)
60 simpr 477 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦𝐴)
6159, 60eqeltrd 2701 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → --𝑦𝐴)
62 negeq 10273 . . . . . . . . . . . 12 (𝑤 = -𝑦 → -𝑤 = --𝑦)
6362eleq1d 2686 . . . . . . . . . . 11 (𝑤 = -𝑦 → (-𝑤𝐴 ↔ --𝑦𝐴))
6463elrab 3363 . . . . . . . . . 10 (-𝑦 ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ↔ (-𝑦 ∈ ℤ ∧ --𝑦𝐴))
6557, 61, 64sylanbrc 698 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -𝑦 ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
66 infssuzle 11771 . . . . . . . . 9 (({𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛) ∧ -𝑦 ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴}) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ≤ -𝑦)
6756, 65, 66syl2anc 693 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ≤ -𝑦)
6852, 55, 67lenegcon2d 10610 . . . . . . 7 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ≤ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ))
6951znegcld 11484 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ)
7069zred 11482 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
7155, 70lenltd 10183 . . . . . . 7 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → (𝑦 ≤ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
7268, 71mpbid 222 . . . . . 6 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦)
7372ralrimiva 2966 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦)
74 breq2 4657 . . . . . . . . 9 (𝑧 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑦 < 𝑧𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )))
7574rspcev 3309 . . . . . . . 8 ((-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )) → ∃𝑧𝐴 𝑦 < 𝑧)
7675ex 450 . . . . . . 7 (-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴 → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
7748, 76syl 17 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
7877ralrimivw 2967 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
79 breq1 4656 . . . . . . . . 9 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑥 < 𝑦 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
8079notbid 308 . . . . . . . 8 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (¬ 𝑥 < 𝑦 ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
8180ralbidv 2986 . . . . . . 7 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
82 breq2 4657 . . . . . . . . 9 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑦 < 𝑥𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )))
8382imbi1d 331 . . . . . . . 8 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧)))
8483ralbidv 2986 . . . . . . 7 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧)))
8581, 84anbi12d 747 . . . . . 6 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))))
8685rspcev 3309 . . . . 5 ((-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴 ∧ (∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8748, 73, 78, 86syl12anc 1324 . . . 4 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8887rexlimdvaa 3032 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → (∃𝑛 ∈ ℤ ∀𝑚𝐴 𝑚𝑛 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
896, 88syl5bi 232 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
90893impia 1261 1 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915   class class class wbr 4653  cfv 5888  infcinf 8347  cr 9935   < clt 10074  cle 10075  -cneg 10267  cz 11377  cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  suprzcl2  11778  suprzub  11779  uzsupss  11780
  Copyright terms: Public domain W3C validator