HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophsi Structured version   Visualization version   GIF version

Theorem lnophsi 28860
Description: The sum of two linear operators is linear. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopco.1 𝑆 ∈ LinOp
lnopco.2 𝑇 ∈ LinOp
Assertion
Ref Expression
lnophsi (𝑆 +op 𝑇) ∈ LinOp

Proof of Theorem lnophsi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopco.1 . . . 4 𝑆 ∈ LinOp
21lnopfi 28828 . . 3 𝑆: ℋ⟶ ℋ
3 lnopco.2 . . . 4 𝑇 ∈ LinOp
43lnopfi 28828 . . 3 𝑇: ℋ⟶ ℋ
52, 4hoaddcli 28627 . 2 (𝑆 +op 𝑇): ℋ⟶ ℋ
6 hvmulcl 27870 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
71lnopaddi 28830 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)))
83lnopaddi 28830 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧)))
97, 8oveq12d 6668 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))))
106, 9sylan 488 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))))
112ffvelrni 6358 . . . . . . . . 9 ((𝑥 · 𝑦) ∈ ℋ → (𝑆‘(𝑥 · 𝑦)) ∈ ℋ)
126, 11syl 17 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑆‘(𝑥 · 𝑦)) ∈ ℋ)
132ffvelrni 6358 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑆𝑧) ∈ ℋ)
1412, 13anim12i 590 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑆𝑧) ∈ ℋ))
154ffvelrni 6358 . . . . . . . . 9 ((𝑥 · 𝑦) ∈ ℋ → (𝑇‘(𝑥 · 𝑦)) ∈ ℋ)
166, 15syl 17 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 · 𝑦)) ∈ ℋ)
174ffvelrni 6358 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
1816, 17anim12i 590 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑇‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ))
19 hvadd4 27893 . . . . . . 7 ((((𝑆‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑆𝑧) ∈ ℋ) ∧ ((𝑇‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ)) → (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
2014, 18, 19syl2anc 693 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
2110, 20eqtrd 2656 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
22 hvaddcl 27869 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
236, 22sylan 488 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
24 hosval 28599 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
252, 4, 24mp3an12 1414 . . . . . 6 (((𝑥 · 𝑦) + 𝑧) ∈ ℋ → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
2623, 25syl 17 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
272ffvelrni 6358 . . . . . . . . 9 (𝑦 ∈ ℋ → (𝑆𝑦) ∈ ℋ)
284ffvelrni 6358 . . . . . . . . 9 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
2927, 28jca 554 . . . . . . . 8 (𝑦 ∈ ℋ → ((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
30 ax-hvdistr1 27865 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
31303expb 1266 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ ((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ)) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
3229, 31sylan2 491 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
33 hosval 28599 . . . . . . . . . 10 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑦) = ((𝑆𝑦) + (𝑇𝑦)))
342, 4, 33mp3an12 1414 . . . . . . . . 9 (𝑦 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑦) = ((𝑆𝑦) + (𝑇𝑦)))
3534oveq2d 6666 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = (𝑥 · ((𝑆𝑦) + (𝑇𝑦))))
3635adantl 482 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = (𝑥 · ((𝑆𝑦) + (𝑇𝑦))))
371lnopmuli 28831 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑆‘(𝑥 · 𝑦)) = (𝑥 · (𝑆𝑦)))
383lnopmuli 28831 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 · 𝑦)) = (𝑥 · (𝑇𝑦)))
3937, 38oveq12d 6668 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
4032, 36, 393eqtr4d 2666 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = ((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))))
41 hosval 28599 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑧) = ((𝑆𝑧) + (𝑇𝑧)))
422, 4, 41mp3an12 1414 . . . . . 6 (𝑧 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑧) = ((𝑆𝑧) + (𝑇𝑧)))
4340, 42oveqan12d 6669 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
4421, 26, 433eqtr4d 2666 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)))
4544ralrimiva 2966 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)))
4645rgen2 2975 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧))
47 ellnop 28717 . 2 ((𝑆 +op 𝑇) ∈ LinOp ↔ ((𝑆 +op 𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧))))
485, 46, 47mpbir2an 955 1 (𝑆 +op 𝑇) ∈ LinOp
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  wral 2912  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  chil 27776   + cva 27777   · csm 27778   +op chos 27795  LinOpclo 27804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-hvsub 27828  df-hosum 28589  df-lnop 28700
This theorem is referenced by:  lnophdi  28861  bdophsi  28955
  Copyright terms: Public domain W3C validator