MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltm1 Structured version   Visualization version   GIF version

Theorem ltm1 10863
Description: A number minus 1 is less than itself. (Contributed by NM, 9-Apr-2006.)
Assertion
Ref Expression
ltm1 (𝐴 ∈ ℝ → (𝐴 − 1) < 𝐴)

Proof of Theorem ltm1
StepHypRef Expression
1 0lt1 10550 . . 3 0 < 1
2 0re 10040 . . . 4 0 ∈ ℝ
3 1re 10039 . . . 4 1 ∈ ℝ
4 ltsub2 10525 . . . 4 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 1 ↔ (𝐴 − 1) < (𝐴 − 0)))
52, 3, 4mp3an12 1414 . . 3 (𝐴 ∈ ℝ → (0 < 1 ↔ (𝐴 − 1) < (𝐴 − 0)))
61, 5mpbii 223 . 2 (𝐴 ∈ ℝ → (𝐴 − 1) < (𝐴 − 0))
7 recn 10026 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
87subid1d 10381 . 2 (𝐴 ∈ ℝ → (𝐴 − 0) = 𝐴)
96, 8breqtrd 4679 1 (𝐴 ∈ ℝ → (𝐴 − 1) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 1990   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   < clt 10074  cmin 10266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  lem1  10864  ltm1d  10956  nnunb  11288  qbtwnxr  12031  xrinfmsslem  12138  xrub  12142  reltre  12170  bcpasc  13108  arisum2  14593  vdwap0  15680  icoopnst  22738  abelthlem6  24190  ballotlemfrceq  30590  poimirlem13  33422  poimirlem14  33423  poimirlem31  33440  poimirlem32  33441  stoweidlem34  40251  smfresal  40995  altgsumbcALT  42131
  Copyright terms: Public domain W3C validator