MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem6 Structured version   Visualization version   GIF version

Theorem abelthlem6 24190
Description: Lemma for abelth 24195. (Contributed by Mario Carneiro, 2-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
abelthlem6.1 (𝜑𝑋 ∈ (𝑆 ∖ {1}))
Assertion
Ref Expression
abelthlem6 (𝜑 → (𝐹𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
Distinct variable groups:   𝑥,𝑛,𝑧,𝑀   𝑛,𝑋,𝑥,𝑧   𝐴,𝑛,𝑥,𝑧   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem6
Dummy variables 𝑖 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abelthlem6.1 . . . 4 (𝜑𝑋 ∈ (𝑆 ∖ {1}))
21eldifad 3586 . . 3 (𝜑𝑋𝑆)
3 oveq1 6657 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝑛) = (𝑋𝑛))
43oveq2d 6666 . . . . 5 (𝑥 = 𝑋 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑛) · (𝑋𝑛)))
54sumeq2sdv 14435 . . . 4 (𝑥 = 𝑋 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
6 abelth.6 . . . 4 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
7 sumex 14418 . . . 4 Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)) ∈ V
85, 6, 7fvmpt 6282 . . 3 (𝑋𝑆 → (𝐹𝑋) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
92, 8syl 17 . 2 (𝜑 → (𝐹𝑋) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
10 nn0uz 11722 . . 3 0 = (ℤ‘0)
11 0zd 11389 . . 3 (𝜑 → 0 ∈ ℤ)
12 fveq2 6191 . . . . . 6 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
13 oveq2 6658 . . . . . 6 (𝑘 = 𝑛 → (𝑋𝑘) = (𝑋𝑛))
1412, 13oveq12d 6668 . . . . 5 (𝑘 = 𝑛 → ((𝐴𝑘) · (𝑋𝑘)) = ((𝐴𝑛) · (𝑋𝑛)))
15 eqid 2622 . . . . 5 (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))
16 ovex 6678 . . . . 5 ((𝐴𝑛) · (𝑋𝑛)) ∈ V
1714, 15, 16fvmpt 6282 . . . 4 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = ((𝐴𝑛) · (𝑋𝑛)))
1817adantl 482 . . 3 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = ((𝐴𝑛) · (𝑋𝑛)))
19 abelth.1 . . . . 5 (𝜑𝐴:ℕ0⟶ℂ)
2019ffvelrnda 6359 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
21 abelth.5 . . . . . . 7 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
22 ssrab2 3687 . . . . . . 7 {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⊆ ℂ
2321, 22eqsstri 3635 . . . . . 6 𝑆 ⊆ ℂ
2423, 2sseldi 3601 . . . . 5 (𝜑𝑋 ∈ ℂ)
25 expcl 12878 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑋𝑛) ∈ ℂ)
2624, 25sylan 488 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (𝑋𝑛) ∈ ℂ)
2720, 26mulcld 10060 . . 3 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) ∈ ℂ)
28 fveq2 6191 . . . . . . . . 9 (𝑘 = 𝑛 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑛))
2928, 13oveq12d 6668 . . . . . . . 8 (𝑘 = 𝑛 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
30 eqid 2622 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))
31 ovex 6678 . . . . . . . 8 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ V
3229, 30, 31fvmpt 6282 . . . . . . 7 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
3332adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
3410, 11, 20serf 12829 . . . . . . . 8 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
3534ffvelrnda 6359 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑛) ∈ ℂ)
3635, 26mulcld 10060 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
37 abelth.2 . . . . . . . . . 10 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
38 abelth.3 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
39 abelth.4 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑀)
4019, 37, 38, 39, 21abelthlem2 24186 . . . . . . . . 9 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
4140simprd 479 . . . . . . . 8 (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
4241, 1sseldd 3604 . . . . . . 7 (𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1))
43 abelth.7 . . . . . . . 8 (𝜑 → seq0( + , 𝐴) ⇝ 0)
4419, 37, 38, 39, 21, 6, 43abelthlem5 24189 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
4542, 44mpdan 702 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
4610, 11, 33, 36, 45isumclim2 14489 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ⇝ Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
47 seqex 12803 . . . . . 6 seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ∈ V
4847a1i 11 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ∈ V)
49 0nn0 11307 . . . . . . . 8 0 ∈ ℕ0
5049a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
51 oveq1 6657 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑘 − 1) = (𝑖 − 1))
5251oveq2d 6666 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (0...(𝑘 − 1)) = (0...(𝑖 − 1)))
5352sumeq1d 14431 . . . . . . . . . . 11 (𝑘 = 𝑖 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚))
54 oveq2 6658 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
5553, 54oveq12d 6668 . . . . . . . . . 10 (𝑘 = 𝑖 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
56 eqid 2622 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))
57 ovex 6678 . . . . . . . . . 10 𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)) ∈ V
5855, 56, 57fvmpt 6282 . . . . . . . . 9 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
5958adantl 482 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
60 fzfid 12772 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (0...(𝑖 − 1)) ∈ Fin)
6119adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
62 elfznn0 12433 . . . . . . . . . . 11 (𝑚 ∈ (0...(𝑖 − 1)) → 𝑚 ∈ ℕ0)
63 ffvelrn 6357 . . . . . . . . . . 11 ((𝐴:ℕ0⟶ℂ ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
6461, 62, 63syl2an 494 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑚 ∈ (0...(𝑖 − 1))) → (𝐴𝑚) ∈ ℂ)
6560, 64fsumcl 14464 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) ∈ ℂ)
66 expcl 12878 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
6724, 66sylan 488 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
6865, 67mulcld 10060 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)) ∈ ℂ)
6959, 68eqeltrd 2701 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
7011peano2zd 11485 . . . . . . . . 9 (𝜑 → (0 + 1) ∈ ℤ)
71 nnuz 11723 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
72 1e0p1 11552 . . . . . . . . . . . . 13 1 = (0 + 1)
7372fveq2i 6194 . . . . . . . . . . . 12 (ℤ‘1) = (ℤ‘(0 + 1))
7471, 73eqtri 2644 . . . . . . . . . . 11 ℕ = (ℤ‘(0 + 1))
7574eleq2i 2693 . . . . . . . . . 10 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘(0 + 1)))
76 nnm1nn0 11334 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
7776adantl 482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑛 − 1) ∈ ℕ0)
78 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 − 1) → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘(𝑛 − 1)))
79 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 − 1) → (𝑋𝑘) = (𝑋↑(𝑛 − 1)))
8078, 79oveq12d 6668 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 − 1) → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1))))
8180oveq2d 6666 . . . . . . . . . . . . 13 (𝑘 = (𝑛 − 1) → (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
82 eqid 2622 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) = (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))
83 ovex 6678 . . . . . . . . . . . . 13 (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))) ∈ V
8481, 82, 83fvmpt 6282 . . . . . . . . . . . 12 ((𝑛 − 1) ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
8577, 84syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
86 ax-1cn 9994 . . . . . . . . . . . 12 1 ∈ ℂ
87 nncn 11028 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
8887adantl 482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
89 nn0ex 11298 . . . . . . . . . . . . . 14 0 ∈ V
9089mptex 6486 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ V
9190shftval 13814 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)))
9286, 88, 91sylancr 695 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)))
93 eqidd 2623 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) = (𝐴𝑚))
9477, 10syl6eleq 2711 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑛 − 1) ∈ (ℤ‘0))
9519adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ0⟶ℂ)
96 elfznn0 12433 . . . . . . . . . . . . . . 15 (𝑚 ∈ (0...(𝑛 − 1)) → 𝑚 ∈ ℕ0)
9795, 96, 63syl2an 494 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) ∈ ℂ)
9893, 94, 97fsumser 14461 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) = (seq0( + , 𝐴)‘(𝑛 − 1)))
99 expm1t 12888 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (𝑋𝑛) = ((𝑋↑(𝑛 − 1)) · 𝑋))
10024, 99sylan 488 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑋𝑛) = ((𝑋↑(𝑛 − 1)) · 𝑋))
10124adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℂ)
102 expcl 12878 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (𝑋↑(𝑛 − 1)) ∈ ℂ)
10324, 76, 102syl2an 494 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑋↑(𝑛 − 1)) ∈ ℂ)
104101, 103mulcomd 10061 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑋 · (𝑋↑(𝑛 − 1))) = ((𝑋↑(𝑛 − 1)) · 𝑋))
105100, 104eqtr4d 2659 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑋𝑛) = (𝑋 · (𝑋↑(𝑛 − 1))))
10698, 105oveq12d 6668 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋 · (𝑋↑(𝑛 − 1)))))
107 nnnn0 11299 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
108107adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
109 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
110109oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (0...(𝑘 − 1)) = (0...(𝑛 − 1)))
111110sumeq1d 14431 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚))
112111, 13oveq12d 6668 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
113 ovex 6678 . . . . . . . . . . . . . 14 𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) ∈ V
114112, 56, 113fvmpt 6282 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
115108, 114syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
116 ffvelrn 6357 . . . . . . . . . . . . . 14 ((seq0( + , 𝐴):ℕ0⟶ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (seq0( + , 𝐴)‘(𝑛 − 1)) ∈ ℂ)
11734, 76, 116syl2an 494 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (seq0( + , 𝐴)‘(𝑛 − 1)) ∈ ℂ)
118101, 117, 103mul12d 10245 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋 · (𝑋↑(𝑛 − 1)))))
119106, 115, 1183eqtr4d 2666 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
12085, 92, 1193eqtr4d 2666 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛))
12175, 120sylan2br 493 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ‘(0 + 1))) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛))
12270, 121seqfeq 12826 . . . . . . . 8 (𝜑 → seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) = seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))))
123 fveq2 6191 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑖))
124123, 54oveq12d 6668 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
125 ovex 6678 . . . . . . . . . . . . 13 ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ V
126124, 30, 125fvmpt 6282 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
127126adantl 482 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
12834ffvelrnda 6359 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
129128, 67mulcld 10060 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ ℂ)
130127, 129eqeltrd 2701 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
131124oveq2d 6666 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
132 ovex 6678 . . . . . . . . . . . . 13 (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) ∈ V
133131, 82, 132fvmpt 6282 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
134133adantl 482 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
135127oveq2d 6666 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → (𝑋 · ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
136134, 135eqtr4d 2659 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)))
13710, 11, 24, 46, 130, 136isermulc2 14388 . . . . . . . . 9 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
138 0z 11388 . . . . . . . . . 10 0 ∈ ℤ
139 1z 11407 . . . . . . . . . 10 1 ∈ ℤ
14090isershft 14394 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ↔ seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
141138, 139, 140mp2an 708 . . . . . . . . 9 (seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ↔ seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
142137, 141sylib 208 . . . . . . . 8 (𝜑 → seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
143122, 142eqbrtrrd 4677 . . . . . . 7 (𝜑 → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
14410, 50, 69, 143clim2ser2 14386 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)))
145 seq1 12814 . . . . . . . . . . 11 (0 ∈ ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0))
146138, 145ax-mp 5 . . . . . . . . . 10 (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0)
147 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
148147oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (0...(𝑘 − 1)) = (0...(0 − 1)))
149 0re 10040 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
150 ltm1 10863 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → (0 − 1) < 0)
151149, 150ax-mp 5 . . . . . . . . . . . . . . . . 17 (0 − 1) < 0
152 peano2zm 11420 . . . . . . . . . . . . . . . . . . 19 (0 ∈ ℤ → (0 − 1) ∈ ℤ)
153138, 152ax-mp 5 . . . . . . . . . . . . . . . . . 18 (0 − 1) ∈ ℤ
154 fzn 12357 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℤ ∧ (0 − 1) ∈ ℤ) → ((0 − 1) < 0 ↔ (0...(0 − 1)) = ∅))
155138, 153, 154mp2an 708 . . . . . . . . . . . . . . . . 17 ((0 − 1) < 0 ↔ (0...(0 − 1)) = ∅)
156151, 155mpbi 220 . . . . . . . . . . . . . . . 16 (0...(0 − 1)) = ∅
157148, 156syl6eq 2672 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (0...(𝑘 − 1)) = ∅)
158157sumeq1d 14431 . . . . . . . . . . . . . 14 (𝑘 = 0 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ ∅ (𝐴𝑚))
159 sum0 14452 . . . . . . . . . . . . . 14 Σ𝑚 ∈ ∅ (𝐴𝑚) = 0
160158, 159syl6eq 2672 . . . . . . . . . . . . 13 (𝑘 = 0 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = 0)
161 oveq2 6658 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑋𝑘) = (𝑋↑0))
162160, 161oveq12d 6668 . . . . . . . . . . . 12 (𝑘 = 0 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (0 · (𝑋↑0)))
163 ovex 6678 . . . . . . . . . . . 12 (0 · (𝑋↑0)) ∈ V
164162, 56, 163fvmpt 6282 . . . . . . . . . . 11 (0 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0) = (0 · (𝑋↑0)))
16549, 164ax-mp 5 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0) = (0 · (𝑋↑0))
166146, 165eqtri 2644 . . . . . . . . 9 (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = (0 · (𝑋↑0))
167 expcl 12878 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝑋↑0) ∈ ℂ)
16824, 49, 167sylancl 694 . . . . . . . . . 10 (𝜑 → (𝑋↑0) ∈ ℂ)
169168mul02d 10234 . . . . . . . . 9 (𝜑 → (0 · (𝑋↑0)) = 0)
170166, 169syl5eq 2668 . . . . . . . 8 (𝜑 → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = 0)
171170oveq2d 6666 . . . . . . 7 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)) = ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + 0))
17210, 11, 33, 36, 45isumcl 14492 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
17324, 172mulcld 10060 . . . . . . . 8 (𝜑 → (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℂ)
174173addid1d 10236 . . . . . . 7 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + 0) = (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
175171, 174eqtrd 2656 . . . . . 6 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)) = (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
176144, 175breqtrd 4679 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
17710, 11, 130serf 12829 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))):ℕ0⟶ℂ)
178177ffvelrnda 6359 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) ∈ ℂ)
17910, 11, 69serf 12829 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))):ℕ0⟶ℂ)
180179ffvelrnda 6359 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘𝑖) ∈ ℂ)
181 simpr 477 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
182181, 10syl6eleq 2711 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ‘0))
183 simpl 473 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝜑)
184 elfznn0 12433 . . . . . . 7 (𝑛 ∈ (0...𝑖) → 𝑛 ∈ ℕ0)
18533, 36eqeltrd 2701 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
186183, 184, 185syl2an 494 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
187114adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
188 fzfid 12772 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (0...(𝑛 − 1)) ∈ Fin)
18919adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
190189, 96, 63syl2an 494 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) ∈ ℂ)
191188, 190fsumcl 14464 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) ∈ ℂ)
192191, 26mulcld 10060 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) ∈ ℂ)
193187, 192eqeltrd 2701 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
194183, 184, 193syl2an 494 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
195 eqidd 2623 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝑛)) → (𝐴𝑚) = (𝐴𝑚))
196 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
197196, 10syl6eleq 2711 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
198 elfznn0 12433 . . . . . . . . . . . . . . 15 (𝑚 ∈ (0...𝑛) → 𝑚 ∈ ℕ0)
199189, 198, 63syl2an 494 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝑛)) → (𝐴𝑚) ∈ ℂ)
200195, 197, 199fsumser 14461 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...𝑛)(𝐴𝑚) = (seq0( + , 𝐴)‘𝑛))
201 fveq2 6191 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝐴𝑚) = (𝐴𝑛))
202197, 199, 201fsumm1 14480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...𝑛)(𝐴𝑚) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)))
203200, 202eqtr3d 2658 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)))
204203oveq1d 6665 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) = ((Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)))
205191, 20pncan2d 10394 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) = (𝐴𝑛))
206204, 205eqtr2d 2657 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) = ((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)))
207206oveq1d 6665 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) · (𝑋𝑛)))
20835, 191, 26subdird 10487 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
209207, 208eqtrd 2656 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
21033, 187oveq12d 6668 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
211209, 18, 2103eqtr4d 2666 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)))
212183, 184, 211syl2an 494 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)))
213182, 186, 194, 212sersub 12844 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘))))‘𝑖) = ((seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) − (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘𝑖)))
21410, 11, 46, 48, 176, 178, 180, 213climsub 14364 . . . 4 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ⇝ (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
215 1cnd 10056 . . . . . 6 (𝜑 → 1 ∈ ℂ)
216215, 24, 172subdird 10487 . . . . 5 (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = ((1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
217172mulid2d 10058 . . . . . 6 (𝜑 → (1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
218217oveq1d 6665 . . . . 5 (𝜑 → ((1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) = (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
219216, 218eqtrd 2656 . . . 4 (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
220214, 219breqtrrd 4681 . . 3 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ⇝ ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
22110, 11, 18, 27, 220isumclim 14488 . 2 (𝜑 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
2229, 221eqtrd 2656 1 (𝜑 → (𝐹𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  cmpt 4729  dom cdm 5114  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801  cexp 12860   shift cshi 13806  abscabs 13974  cli 14215  Σcsu 14416  ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741
This theorem is referenced by:  abelthlem7  24192
  Copyright terms: Public domain W3C validator