| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1061 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ≠ ∅) |
| 2 | | psmetres2 22119 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴)) |
| 3 | 2 | 3adant1 1079 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴)) |
| 4 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏)) |
| 5 | 4 | imaeq2d 5466 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 6 | 5 | cbvmptv 4750 |
. . . . . 6
⊢ (𝑎 ∈ ℝ+
↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 7 | 6 | rneqi 5352 |
. . . . 5
⊢ ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 8 | 7 | metustfbas 22362 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ (𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴)) → ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∈ (fBas‘(𝐴 × 𝐴))) |
| 9 | 1, 3, 8 | syl2anc 693 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∈ (fBas‘(𝐴 × 𝐴))) |
| 10 | | fgval 21674 |
. . 3
⊢ (ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∈ (fBas‘(𝐴 × 𝐴)) → ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅}) |
| 11 | 9, 10 | syl 17 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅}) |
| 12 | | metuval 22354 |
. . 3
⊢ ((𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴) → (metUnif‘(𝐷 ↾ (𝐴 × 𝐴))) = ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))))) |
| 13 | 3, 12 | syl 17 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (metUnif‘(𝐷 ↾ (𝐴 × 𝐴))) = ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))))) |
| 14 | | fvex 6201 |
. . . 4
⊢
(metUnif‘𝐷)
∈ V |
| 15 | 3 | elfvexd 6222 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 16 | | xpexg 6960 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐴 ∈ V) → (𝐴 × 𝐴) ∈ V) |
| 17 | 15, 15, 16 | syl2anc 693 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ∈ V) |
| 18 | | restval 16087 |
. . . 4
⊢
(((metUnif‘𝐷)
∈ V ∧ (𝐴 ×
𝐴) ∈ V) →
((metUnif‘𝐷)
↾t (𝐴
× 𝐴)) = ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴)))) |
| 19 | 14, 17, 18 | sylancr 695 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴)))) |
| 20 | | inss2 3834 |
. . . . . . . . . . 11
⊢ (𝑣 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
| 21 | | sseq1 3626 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → (𝑢 ⊆ (𝐴 × 𝐴) ↔ (𝑣 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴))) |
| 22 | 20, 21 | mpbiri 248 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝑢 ⊆ (𝐴 × 𝐴)) |
| 23 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑢 ∈ V |
| 24 | 23 | elpw 4164 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ↔ 𝑢 ⊆ (𝐴 × 𝐴)) |
| 25 | 22, 24 | sylibr 224 |
. . . . . . . . 9
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴)) |
| 26 | 25 | rexlimivw 3029 |
. . . . . . . 8
⊢
(∃𝑣 ∈
(metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴)) |
| 27 | 26 | adantl 482 |
. . . . . . 7
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴)) |
| 28 | | nfv 1843 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎(((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) |
| 29 | | nfmpt1 4747 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎(𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| 30 | 29 | nfrn 5368 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎ran
(𝑎 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| 31 | 30 | nfcri 2758 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| 32 | 28, 31 | nfan 1828 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
| 33 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎 𝑤 ⊆ 𝑣 |
| 34 | 32, 33 | nfan 1828 |
. . . . . . . . . 10
⊢
Ⅎ𝑎(((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) |
| 35 | | nfmpt1 4747 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎(𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
| 36 | 35 | nfrn 5368 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
| 37 | | nfcv 2764 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎𝒫 𝑢 |
| 38 | 36, 37 | nfin 3820 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎(ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) |
| 39 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎∅ |
| 40 | 38, 39 | nfne 2894 |
. . . . . . . . . 10
⊢
Ⅎ𝑎(ran (𝑎 ∈ ℝ+
↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ |
| 41 | | simplr 792 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → 𝑎 ∈ ℝ+) |
| 42 | | ineq1 3807 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (◡𝐷 “ (0[,)𝑎)) → (𝑤 ∩ (𝐴 × 𝐴)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
| 43 | 42 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
| 44 | | simp2 1062 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐷 ∈ (PsMet‘𝑋)) |
| 45 | | psmetf 22111 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 46 | | ffun 6048 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun
𝐷) |
| 47 | | respreima 6344 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
𝐷 → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
| 48 | 44, 45, 46, 47 | 4syl 19 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
| 49 | 48 | ad6antr 772 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
| 50 | 43, 49 | eqtr4d 2659 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
| 51 | | rspe 3003 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℝ+
∧ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) → ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
| 52 | 41, 50, 51 | syl2anc 693 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
| 53 | | vex 3203 |
. . . . . . . . . . . . . 14
⊢ 𝑤 ∈ V |
| 54 | 53 | inex1 4799 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∩ (𝐴 × 𝐴)) ∈ V |
| 55 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ℝ+
↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
| 56 | 55 | elrnmpt 5372 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∩ (𝐴 × 𝐴)) ∈ V → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))) |
| 57 | 54, 56 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
| 58 | 52, 57 | sylibr 224 |
. . . . . . . . . . 11
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))) |
| 59 | | simpllr 799 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → 𝑤 ⊆ 𝑣) |
| 60 | | ssinss1 3841 |
. . . . . . . . . . . . 13
⊢ (𝑤 ⊆ 𝑣 → (𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣) |
| 61 | 59, 60 | syl 17 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣) |
| 62 | | inss2 3834 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
| 63 | 62 | a1i 11 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)) |
| 64 | | pweq 4161 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝒫 𝑢 = 𝒫 (𝑣 ∩ (𝐴 × 𝐴))) |
| 65 | 64 | eleq2d 2687 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ (𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 (𝑣 ∩ (𝐴 × 𝐴)))) |
| 66 | 54 | elpw 4164 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 (𝑣 ∩ (𝐴 × 𝐴)) ↔ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴))) |
| 67 | 65, 66 | syl6bb 276 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))) |
| 68 | | ssin 3835 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣 ∧ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)) ↔ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴))) |
| 69 | 67, 68 | syl6bbr 278 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ ((𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣 ∧ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)))) |
| 70 | 69 | ad5antlr 771 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ ((𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣 ∧ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)))) |
| 71 | 61, 63, 70 | mpbir2and 957 |
. . . . . . . . . . 11
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢) |
| 72 | | inelcm 4032 |
. . . . . . . . . . 11
⊢ (((𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∧ (𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
| 73 | 58, 71, 72 | syl2anc 693 |
. . . . . . . . . 10
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
| 74 | | simplr 792 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) → 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
| 75 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| 76 | 75 | elrnmpt 5372 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑎)))) |
| 77 | 53, 76 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑎))) |
| 78 | 74, 77 | sylib 208 |
. . . . . . . . . 10
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) → ∃𝑎 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑎))) |
| 79 | 34, 40, 73, 78 | r19.29af2 3075 |
. . . . . . . . 9
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
| 80 | | ssn0 3976 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐴 ≠ ∅) → 𝑋 ≠ ∅) |
| 81 | 80 | ancoms 469 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ 𝑋) → 𝑋 ≠ ∅) |
| 82 | 81 | 3adant2 1080 |
. . . . . . . . . . . 12
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ≠ ∅) |
| 83 | | metuel 22369 |
. . . . . . . . . . . 12
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑣 ∈ (metUnif‘𝐷) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑣))) |
| 84 | 82, 44, 83 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑣 ∈ (metUnif‘𝐷) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑣))) |
| 85 | 84 | simplbda 654 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑣) |
| 86 | 85 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑣) |
| 87 | 79, 86 | r19.29a 3078 |
. . . . . . . 8
⊢ ((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
| 88 | 87 | r19.29an 3077 |
. . . . . . 7
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
| 89 | 27, 88 | jca 554 |
. . . . . 6
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) |
| 90 | | simprl 794 |
. . . . . . . . . . 11
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴)) |
| 91 | 90 | elpwid 4170 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 ⊆ (𝐴 × 𝐴)) |
| 92 | | simpl3 1066 |
. . . . . . . . . . 11
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝐴 ⊆ 𝑋) |
| 93 | | xpss12 5225 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
| 94 | 92, 92, 93 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
| 95 | 91, 94 | sstrd 3613 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 ⊆ (𝑋 × 𝑋)) |
| 96 | | difssd 3738 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ⊆ (𝑋 × 𝑋)) |
| 97 | 95, 96 | unssd 3789 |
. . . . . . . 8
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ (𝑋 × 𝑋)) |
| 98 | | simplr 792 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑏 ∈ ℝ+) |
| 99 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑏))) |
| 100 | 4 | imaeq2d 5466 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (◡𝐷 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑏))) |
| 101 | 100 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → ((◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑎)) ↔ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑏)))) |
| 102 | 101 | rspcev 3309 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ ℝ+
∧ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑏))) → ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑎))) |
| 103 | 98, 99, 102 | syl2anc 693 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑎))) |
| 104 | 44 | ad4antr 768 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝐷 ∈ (PsMet‘𝑋)) |
| 105 | | cnvexg 7112 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) |
| 106 | | imaexg 7103 |
. . . . . . . . . . . 12
⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑏)) ∈ V) |
| 107 | 75 | elrnmpt 5372 |
. . . . . . . . . . . 12
⊢ ((◡𝐷 “ (0[,)𝑏)) ∈ V → ((◡𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑎)))) |
| 108 | 104, 105,
106, 107 | 4syl 19 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((◡𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑎)))) |
| 109 | 103, 108 | mpbird 247 |
. . . . . . . . . 10
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
| 110 | | cnvimass 5485 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝐷 “ (0[,)𝑏)) ⊆ dom 𝐷 |
| 111 | | fdm 6051 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom
𝐷 = (𝑋 × 𝑋)) |
| 112 | 45, 111 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋)) |
| 113 | 110, 112 | syl5sseq 3653 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ (PsMet‘𝑋) → (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑋 × 𝑋)) |
| 114 | 104, 113 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑋 × 𝑋)) |
| 115 | | ssdif0 3942 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐷 “ (0[,)𝑏)) ⊆ (𝑋 × 𝑋) ↔ ((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) = ∅) |
| 116 | 114, 115 | sylib 208 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) = ∅) |
| 117 | | 0ss 3972 |
. . . . . . . . . . . . 13
⊢ ∅
⊆ 𝑢 |
| 118 | 116, 117 | syl6eqss 3655 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ⊆ 𝑢) |
| 119 | | respreima 6344 |
. . . . . . . . . . . . . 14
⊢ (Fun
𝐷 → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) = ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) |
| 120 | 104, 45, 46, 119 | 4syl 19 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) = ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) |
| 121 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 122 | | simpllr 799 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑣 ∈ 𝒫 𝑢) |
| 123 | 122 | elpwid 4170 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑣 ⊆ 𝑢) |
| 124 | 121, 123 | eqsstr3d 3640 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ⊆ 𝑢) |
| 125 | 120, 124 | eqsstr3d 3640 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴)) ⊆ 𝑢) |
| 126 | 118, 125 | unssd 3789 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) ⊆ 𝑢) |
| 127 | | ssundif 4052 |
. . . . . . . . . . . 12
⊢ ((◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ↔ ((◡𝐷 “ (0[,)𝑏)) ∖ 𝑢) ⊆ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) |
| 128 | | difcom 4053 |
. . . . . . . . . . . 12
⊢ (((◡𝐷 “ (0[,)𝑏)) ∖ 𝑢) ⊆ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ↔ ((◡𝐷 “ (0[,)𝑏)) ∖ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ 𝑢) |
| 129 | | difdif2 3884 |
. . . . . . . . . . . . 13
⊢ ((◡𝐷 “ (0[,)𝑏)) ∖ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) = (((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) |
| 130 | 129 | sseq1i 3629 |
. . . . . . . . . . . 12
⊢ (((◡𝐷 “ (0[,)𝑏)) ∖ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ 𝑢 ↔ (((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) ⊆ 𝑢) |
| 131 | 127, 128,
130 | 3bitri 286 |
. . . . . . . . . . 11
⊢ ((◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ↔ (((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) ⊆ 𝑢) |
| 132 | 126, 131 | sylibr 224 |
. . . . . . . . . 10
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) |
| 133 | | sseq1 3626 |
. . . . . . . . . . 11
⊢ (𝑤 = (◡𝐷 “ (0[,)𝑏)) → (𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ↔ (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))))) |
| 134 | 133 | rspcev 3309 |
. . . . . . . . . 10
⊢ (((◡𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ∧ (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) |
| 135 | 109, 132,
134 | syl2anc 693 |
. . . . . . . . 9
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) |
| 136 | | elin 3796 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ↔ (𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∧ 𝑣 ∈ 𝒫 𝑢)) |
| 137 | | vex 3203 |
. . . . . . . . . . . . . . . 16
⊢ 𝑣 ∈ V |
| 138 | 6 | elrnmpt 5372 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ V → (𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
| 139 | 137, 138 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 140 | 139 | anbi1i 731 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∧ 𝑣 ∈ 𝒫 𝑢) ↔ (∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ∧ 𝑣 ∈ 𝒫 𝑢)) |
| 141 | | ancom 466 |
. . . . . . . . . . . . . 14
⊢
((∃𝑏 ∈
ℝ+ 𝑣 =
(◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ∧ 𝑣 ∈ 𝒫 𝑢) ↔ (𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
| 142 | 136, 140,
141 | 3bitri 286 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ↔ (𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
| 143 | 142 | exbii 1774 |
. . . . . . . . . . . 12
⊢
(∃𝑣 𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ↔ ∃𝑣(𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
| 144 | | n0 3931 |
. . . . . . . . . . . 12
⊢ ((ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢)) |
| 145 | | df-rex 2918 |
. . . . . . . . . . . 12
⊢
(∃𝑣 ∈
𝒫 𝑢∃𝑏 ∈ ℝ+
𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ↔ ∃𝑣(𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
| 146 | 143, 144,
145 | 3bitr4i 292 |
. . . . . . . . . . 11
⊢ ((ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑣 ∈ 𝒫 𝑢∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 147 | 146 | biimpi 206 |
. . . . . . . . . 10
⊢ ((ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ → ∃𝑣 ∈ 𝒫 𝑢∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 148 | 147 | ad2antll 765 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ∃𝑣 ∈ 𝒫 𝑢∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 149 | 135, 148 | r19.29vva 3081 |
. . . . . . . 8
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) |
| 150 | 82 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑋 ≠ ∅) |
| 151 | 44 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝐷 ∈ (PsMet‘𝑋)) |
| 152 | | metuel 22369 |
. . . . . . . . 9
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷) ↔ ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))))) |
| 153 | 150, 151,
152 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷) ↔ ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))))) |
| 154 | 97, 149, 153 | mpbir2and 957 |
. . . . . . 7
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷)) |
| 155 | | indir 3875 |
. . . . . . . . 9
⊢ ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴)) = ((𝑢 ∩ (𝐴 × 𝐴)) ∪ (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴))) |
| 156 | | incom 3805 |
. . . . . . . . . . 11
⊢ ((𝐴 × 𝐴) ∩ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) = (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴)) |
| 157 | | disjdif 4040 |
. . . . . . . . . . 11
⊢ ((𝐴 × 𝐴) ∩ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) = ∅ |
| 158 | 156, 157 | eqtr3i 2646 |
. . . . . . . . . 10
⊢ (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴)) = ∅ |
| 159 | 158 | uneq2i 3764 |
. . . . . . . . 9
⊢ ((𝑢 ∩ (𝐴 × 𝐴)) ∪ (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴))) = ((𝑢 ∩ (𝐴 × 𝐴)) ∪ ∅) |
| 160 | | un0 3967 |
. . . . . . . . 9
⊢ ((𝑢 ∩ (𝐴 × 𝐴)) ∪ ∅) = (𝑢 ∩ (𝐴 × 𝐴)) |
| 161 | 155, 159,
160 | 3eqtri 2648 |
. . . . . . . 8
⊢ ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴)) = (𝑢 ∩ (𝐴 × 𝐴)) |
| 162 | | df-ss 3588 |
. . . . . . . . 9
⊢ (𝑢 ⊆ (𝐴 × 𝐴) ↔ (𝑢 ∩ (𝐴 × 𝐴)) = 𝑢) |
| 163 | 91, 162 | sylib 208 |
. . . . . . . 8
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝑢 ∩ (𝐴 × 𝐴)) = 𝑢) |
| 164 | 161, 163 | syl5req 2669 |
. . . . . . 7
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 = ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴))) |
| 165 | | ineq1 3807 |
. . . . . . . . 9
⊢ (𝑣 = (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) → (𝑣 ∩ (𝐴 × 𝐴)) = ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴))) |
| 166 | 165 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑣 = (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) → (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) ↔ 𝑢 = ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴)))) |
| 167 | 166 | rspcev 3309 |
. . . . . . 7
⊢ (((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷) ∧ 𝑢 = ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴))) → ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) |
| 168 | 154, 164,
167 | syl2anc 693 |
. . . . . 6
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) |
| 169 | 89, 168 | impbida 877 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) ↔ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅))) |
| 170 | | eqid 2622 |
. . . . . . 7
⊢ (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) = (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) |
| 171 | 170 | elrnmpt 5372 |
. . . . . 6
⊢ (𝑢 ∈ V → (𝑢 ∈ ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) ↔ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴)))) |
| 172 | 23, 171 | ax-mp 5 |
. . . . 5
⊢ (𝑢 ∈ ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) ↔ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) |
| 173 | | pweq 4161 |
. . . . . . . 8
⊢ (𝑣 = 𝑢 → 𝒫 𝑣 = 𝒫 𝑢) |
| 174 | 173 | ineq2d 3814 |
. . . . . . 7
⊢ (𝑣 = 𝑢 → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) = (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢)) |
| 175 | 174 | neeq1d 2853 |
. . . . . 6
⊢ (𝑣 = 𝑢 → ((ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅ ↔ (ran (𝑎 ∈ ℝ+
↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) |
| 176 | 175 | elrab 3363 |
. . . . 5
⊢ (𝑢 ∈ {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅} ↔ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) |
| 177 | 169, 172,
176 | 3bitr4g 303 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑢 ∈ ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) ↔ 𝑢 ∈ {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅})) |
| 178 | 177 | eqrdv 2620 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅}) |
| 179 | 19, 178 | eqtrd 2656 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅}) |
| 180 | 11, 13, 179 | 3eqtr4rd 2667 |
1
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = (metUnif‘(𝐷 ↾ (𝐴 × 𝐴)))) |