![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modprm1div | Structured version Visualization version GIF version |
Description: A prime number divides an integer minus 1 iff the integer modulo the prime number is 1. (Contributed by Alexander van der Vekens, 17-May-2018.) |
Ref | Expression |
---|---|
modprm1div | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑃) = 1 ↔ 𝑃 ∥ (𝐴 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 15388 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
2 | 1 | nnred 11035 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℝ) |
3 | prmgt1 15409 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
4 | 1mod 12702 | . . . . . 6 ⊢ ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1) | |
5 | 4 | eqcomd 2628 | . . . . 5 ⊢ ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → 1 = (1 mod 𝑃)) |
6 | 2, 3, 5 | syl2anc 693 | . . . 4 ⊢ (𝑃 ∈ ℙ → 1 = (1 mod 𝑃)) |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 1 = (1 mod 𝑃)) |
8 | 7 | eqeq2d 2632 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑃) = 1 ↔ (𝐴 mod 𝑃) = (1 mod 𝑃))) |
9 | 1 | adantr 481 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝑃 ∈ ℕ) |
10 | simpr 477 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ) | |
11 | 1zzd 11408 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 1 ∈ ℤ) | |
12 | moddvds 14991 | . . 3 ⊢ ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴 mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ (𝐴 − 1))) | |
13 | 9, 10, 11, 12 | syl3anc 1326 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ (𝐴 − 1))) |
14 | 8, 13 | bitrd 268 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑃) = 1 ↔ 𝑃 ∥ (𝐴 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 (class class class)co 6650 ℝcr 9935 1c1 9937 < clt 10074 − cmin 10266 ℕcn 11020 ℤcz 11377 mod cmo 12668 ∥ cdvds 14983 ℙcprime 15385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-prm 15386 |
This theorem is referenced by: m1dvdsndvds 15503 modprminv 15504 modprminveq 15505 powm2modprm 15508 numclwwlk5lem 27245 odz2prm2pw 41475 fmtnoprmfac2 41479 |
Copyright terms: Public domain | W3C validator |