MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulidnq Structured version   Visualization version   GIF version

Theorem mulidnq 9785
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulidnq (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)

Proof of Theorem mulidnq
StepHypRef Expression
1 1nq 9750 . . 3 1QQ
2 mulpqnq 9763 . . 3 ((𝐴Q ∧ 1QQ) → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q)))
31, 2mpan2 707 . 2 (𝐴Q → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q)))
4 relxp 5227 . . . . . . 7 Rel (N × N)
5 elpqn 9747 . . . . . . 7 (𝐴Q𝐴 ∈ (N × N))
6 1st2nd 7214 . . . . . . 7 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
74, 5, 6sylancr 695 . . . . . 6 (𝐴Q𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
8 df-1nq 9738 . . . . . . 7 1Q = ⟨1𝑜, 1𝑜
98a1i 11 . . . . . 6 (𝐴Q → 1Q = ⟨1𝑜, 1𝑜⟩)
107, 9oveq12d 6668 . . . . 5 (𝐴Q → (𝐴 ·pQ 1Q) = (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1𝑜, 1𝑜⟩))
11 xp1st 7198 . . . . . . 7 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
125, 11syl 17 . . . . . 6 (𝐴Q → (1st𝐴) ∈ N)
13 xp2nd 7199 . . . . . . 7 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
145, 13syl 17 . . . . . 6 (𝐴Q → (2nd𝐴) ∈ N)
15 1pi 9705 . . . . . . 7 1𝑜N
1615a1i 11 . . . . . 6 (𝐴Q → 1𝑜N)
17 mulpipq 9762 . . . . . 6 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ (1𝑜N ∧ 1𝑜N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1𝑜, 1𝑜⟩) = ⟨((1st𝐴) ·N 1𝑜), ((2nd𝐴) ·N 1𝑜)⟩)
1812, 14, 16, 16, 17syl22anc 1327 . . . . 5 (𝐴Q → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1𝑜, 1𝑜⟩) = ⟨((1st𝐴) ·N 1𝑜), ((2nd𝐴) ·N 1𝑜)⟩)
19 mulidpi 9708 . . . . . . . 8 ((1st𝐴) ∈ N → ((1st𝐴) ·N 1𝑜) = (1st𝐴))
2011, 19syl 17 . . . . . . 7 (𝐴 ∈ (N × N) → ((1st𝐴) ·N 1𝑜) = (1st𝐴))
21 mulidpi 9708 . . . . . . . 8 ((2nd𝐴) ∈ N → ((2nd𝐴) ·N 1𝑜) = (2nd𝐴))
2213, 21syl 17 . . . . . . 7 (𝐴 ∈ (N × N) → ((2nd𝐴) ·N 1𝑜) = (2nd𝐴))
2320, 22opeq12d 4410 . . . . . 6 (𝐴 ∈ (N × N) → ⟨((1st𝐴) ·N 1𝑜), ((2nd𝐴) ·N 1𝑜)⟩ = ⟨(1st𝐴), (2nd𝐴)⟩)
245, 23syl 17 . . . . 5 (𝐴Q → ⟨((1st𝐴) ·N 1𝑜), ((2nd𝐴) ·N 1𝑜)⟩ = ⟨(1st𝐴), (2nd𝐴)⟩)
2510, 18, 243eqtrd 2660 . . . 4 (𝐴Q → (𝐴 ·pQ 1Q) = ⟨(1st𝐴), (2nd𝐴)⟩)
2625, 7eqtr4d 2659 . . 3 (𝐴Q → (𝐴 ·pQ 1Q) = 𝐴)
2726fveq2d 6195 . 2 (𝐴Q → ([Q]‘(𝐴 ·pQ 1Q)) = ([Q]‘𝐴))
28 nqerid 9755 . 2 (𝐴Q → ([Q]‘𝐴) = 𝐴)
293, 27, 283eqtrd 2660 1 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cop 4183   × cxp 5112  Rel wrel 5119  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  1𝑜c1o 7553  Ncnpi 9666   ·N cmi 9668   ·pQ cmpq 9671  Qcnq 9674  1Qc1q 9675  [Q]cerq 9676   ·Q cmq 9678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-mi 9696  df-lti 9697  df-mpq 9731  df-enq 9733  df-nq 9734  df-erq 9735  df-mq 9737  df-1nq 9738
This theorem is referenced by:  recmulnq  9786  ltaddnq  9796  halfnq  9798  ltrnq  9801  addclprlem1  9838  addclprlem2  9839  mulclprlem  9841  1idpr  9851  prlem934  9855  prlem936  9869  reclem3pr  9871
  Copyright terms: Public domain W3C validator