MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulidnq Structured version   Visualization version   Unicode version

Theorem mulidnq 9785
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulidnq  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )

Proof of Theorem mulidnq
StepHypRef Expression
1 1nq 9750 . . 3  |-  1Q  e.  Q.
2 mulpqnq 9763 . . 3  |-  ( ( A  e.  Q.  /\  1Q  e.  Q. )  -> 
( A  .Q  1Q )  =  ( /Q `  ( A  .pQ  1Q ) ) )
31, 2mpan2 707 . 2  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  ( /Q `  ( A  .pQ  1Q ) ) )
4 relxp 5227 . . . . . . 7  |-  Rel  ( N.  X.  N. )
5 elpqn 9747 . . . . . . 7  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
6 1st2nd 7214 . . . . . . 7  |-  ( ( Rel  ( N.  X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
74, 5, 6sylancr 695 . . . . . 6  |-  ( A  e.  Q.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
8 df-1nq 9738 . . . . . . 7  |-  1Q  =  <. 1o ,  1o >.
98a1i 11 . . . . . 6  |-  ( A  e.  Q.  ->  1Q  =  <. 1o ,  1o >. )
107, 9oveq12d 6668 . . . . 5  |-  ( A  e.  Q.  ->  ( A  .pQ  1Q )  =  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. 1o ,  1o >. ) )
11 xp1st 7198 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
125, 11syl 17 . . . . . 6  |-  ( A  e.  Q.  ->  ( 1st `  A )  e. 
N. )
13 xp2nd 7199 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
145, 13syl 17 . . . . . 6  |-  ( A  e.  Q.  ->  ( 2nd `  A )  e. 
N. )
15 1pi 9705 . . . . . . 7  |-  1o  e.  N.
1615a1i 11 . . . . . 6  |-  ( A  e.  Q.  ->  1o  e.  N. )
17 mulpipq 9762 . . . . . 6  |-  ( ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  /\  ( 1o  e.  N.  /\  1o  e.  N. )
)  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  .pQ  <. 1o ,  1o >. )  =  <. ( ( 1st `  A
)  .N  1o ) ,  ( ( 2nd `  A )  .N  1o ) >. )
1812, 14, 16, 16, 17syl22anc 1327 . . . . 5  |-  ( A  e.  Q.  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. 1o ,  1o >. )  =  <. ( ( 1st `  A
)  .N  1o ) ,  ( ( 2nd `  A )  .N  1o ) >. )
19 mulidpi 9708 . . . . . . . 8  |-  ( ( 1st `  A )  e.  N.  ->  (
( 1st `  A
)  .N  1o )  =  ( 1st `  A
) )
2011, 19syl 17 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( ( 1st `  A )  .N  1o )  =  ( 1st `  A
) )
21 mulidpi 9708 . . . . . . . 8  |-  ( ( 2nd `  A )  e.  N.  ->  (
( 2nd `  A
)  .N  1o )  =  ( 2nd `  A
) )
2213, 21syl 17 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( ( 2nd `  A )  .N  1o )  =  ( 2nd `  A
) )
2320, 22opeq12d 4410 . . . . . 6  |-  ( A  e.  ( N.  X.  N. )  ->  <. (
( 1st `  A
)  .N  1o ) ,  ( ( 2nd `  A )  .N  1o ) >.  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >. )
245, 23syl 17 . . . . 5  |-  ( A  e.  Q.  ->  <. (
( 1st `  A
)  .N  1o ) ,  ( ( 2nd `  A )  .N  1o ) >.  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >. )
2510, 18, 243eqtrd 2660 . . . 4  |-  ( A  e.  Q.  ->  ( A  .pQ  1Q )  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >. )
2625, 7eqtr4d 2659 . . 3  |-  ( A  e.  Q.  ->  ( A  .pQ  1Q )  =  A )
2726fveq2d 6195 . 2  |-  ( A  e.  Q.  ->  ( /Q `  ( A  .pQ  1Q ) )  =  ( /Q `  A ) )
28 nqerid 9755 . 2  |-  ( A  e.  Q.  ->  ( /Q `  A )  =  A )
293, 27, 283eqtrd 2660 1  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   <.cop 4183    X. cxp 5112   Rel wrel 5119   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   1oc1o 7553   N.cnpi 9666    .N cmi 9668    .pQ cmpq 9671   Q.cnq 9674   1Qc1q 9675   /Qcerq 9676    .Q cmq 9678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-mi 9696  df-lti 9697  df-mpq 9731  df-enq 9733  df-nq 9734  df-erq 9735  df-mq 9737  df-1nq 9738
This theorem is referenced by:  recmulnq  9786  ltaddnq  9796  halfnq  9798  ltrnq  9801  addclprlem1  9838  addclprlem2  9839  mulclprlem  9841  1idpr  9851  prlem934  9855  prlem936  9869  reclem3pr  9871
  Copyright terms: Public domain W3C validator