MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negdvdsb Structured version   Visualization version   GIF version

Theorem negdvdsb 14998
Description: An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
negdvdsb ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ -𝑀𝑁))

Proof of Theorem negdvdsb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 znegcl 11412 . . . 4 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
32anim1i 592 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 znegcl 11412 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
54adantl 482 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
6 zcn 11382 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
7 zcn 11382 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 mul2neg 10469 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (-𝑥 · -𝑀) = (𝑥 · 𝑀))
96, 7, 8syl2anr 495 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (-𝑥 · -𝑀) = (𝑥 · 𝑀))
109adantlr 751 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (-𝑥 · -𝑀) = (𝑥 · 𝑀))
1110eqeq1d 2624 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((-𝑥 · -𝑀) = 𝑁 ↔ (𝑥 · 𝑀) = 𝑁))
1211biimprd 238 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · -𝑀) = 𝑁))
131, 3, 5, 12dvds1lem 14993 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → -𝑀𝑁))
14 mulneg12 10468 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (-𝑥 · 𝑀) = (𝑥 · -𝑀))
156, 7, 14syl2anr 495 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (-𝑥 · 𝑀) = (𝑥 · -𝑀))
1615adantlr 751 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (-𝑥 · 𝑀) = (𝑥 · -𝑀))
1716eqeq1d 2624 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((-𝑥 · 𝑀) = 𝑁 ↔ (𝑥 · -𝑀) = 𝑁))
1817biimprd 238 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · -𝑀) = 𝑁 → (-𝑥 · 𝑀) = 𝑁))
193, 1, 5, 18dvds1lem 14993 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀𝑁𝑀𝑁))
2013, 19impbid 202 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ -𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  (class class class)co 6650  cc 9934   · cmul 9941  -cneg 10267  cz 11377  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-z 11378  df-dvds 14984
This theorem is referenced by:  absdvdsb  15000  3dvds  15052  3dvdsOLD  15053  lcmneg  15316
  Copyright terms: Public domain W3C validator