MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmeq0 Structured version   Visualization version   GIF version

Theorem nmeq0 22422
Description: The identity is the only element of the group with zero norm. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (Revised by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmf.x 𝑋 = (Base‘𝐺)
nmf.n 𝑁 = (norm‘𝐺)
nmeq0.z 0 = (0g𝐺)
Assertion
Ref Expression
nmeq0 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 0 ))

Proof of Theorem nmeq0
StepHypRef Expression
1 nmf.n . . . . 5 𝑁 = (norm‘𝐺)
2 nmf.x . . . . 5 𝑋 = (Base‘𝐺)
3 nmeq0.z . . . . 5 0 = (0g𝐺)
4 eqid 2622 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
51, 2, 3, 4nmval 22394 . . . 4 (𝐴𝑋 → (𝑁𝐴) = (𝐴(dist‘𝐺) 0 ))
65adantl 482 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴(dist‘𝐺) 0 ))
76eqeq1d 2624 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ (𝐴(dist‘𝐺) 0 ) = 0))
8 ngpgrp 22403 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
98adantr 481 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
102, 3grpidcl 17450 . . . 4 (𝐺 ∈ Grp → 0𝑋)
119, 10syl 17 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → 0𝑋)
12 ngpxms 22405 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp)
132, 4xmseq0 22269 . . . 4 ((𝐺 ∈ ∞MetSp ∧ 𝐴𝑋0𝑋) → ((𝐴(dist‘𝐺) 0 ) = 0 ↔ 𝐴 = 0 ))
1412, 13syl3an1 1359 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋0𝑋) → ((𝐴(dist‘𝐺) 0 ) = 0 ↔ 𝐴 = 0 ))
1511, 14mpd3an3 1425 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → ((𝐴(dist‘𝐺) 0 ) = 0 ↔ 𝐴 = 0 ))
167, 15bitrd 268 1 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  0cc0 9936  Basecbs 15857  distcds 15950  0gc0g 16100  Grpcgrp 17422  ∞MetSpcxme 22122  normcnm 22381  NrmGrpcngp 22382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388
This theorem is referenced by:  nmne0  22423  ngpi  22432  nm0  22433  nmgt0  22434  tngngp  22458  tngngp3  22460  nlmmul0or  22487  nmoeq0  22540  ncvs1  22957
  Copyright terms: Public domain W3C validator