MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngp Structured version   Visualization version   GIF version

Theorem tngngp 22458
Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngngp.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngngp.x 𝑋 = (Base‘𝐺)
tngngp.m = (-g𝐺)
tngngp.z 0 = (0g𝐺)
Assertion
Ref Expression
tngngp (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦   𝑥,𝑋,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem tngngp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngngp.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
2 tngngp.x . . . . 5 𝑋 = (Base‘𝐺)
3 eqid 2622 . . . . 5 (dist‘𝑇) = (dist‘𝑇)
41, 2, 3tngngp2 22456 . . . 4 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘𝑋))))
54simprbda 653 . . 3 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐺 ∈ Grp)
6 simplr 792 . . . . . . 7 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑇 ∈ NrmGrp)
7 simpr 477 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑥𝑋)
8 fvex 6201 . . . . . . . . . . . 12 (Base‘𝐺) ∈ V
92, 8eqeltri 2697 . . . . . . . . . . 11 𝑋 ∈ V
10 reex 10027 . . . . . . . . . . 11 ℝ ∈ V
11 fex2 7121 . . . . . . . . . . 11 ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V) → 𝑁 ∈ V)
129, 10, 11mp3an23 1416 . . . . . . . . . 10 (𝑁:𝑋⟶ℝ → 𝑁 ∈ V)
1312ad2antrr 762 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑁 ∈ V)
141, 2tngbas 22445 . . . . . . . . 9 (𝑁 ∈ V → 𝑋 = (Base‘𝑇))
1513, 14syl 17 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑋 = (Base‘𝑇))
167, 15eleqtrd 2703 . . . . . . 7 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑥 ∈ (Base‘𝑇))
17 eqid 2622 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
18 eqid 2622 . . . . . . . 8 (norm‘𝑇) = (norm‘𝑇)
19 eqid 2622 . . . . . . . 8 (0g𝑇) = (0g𝑇)
2017, 18, 19nmeq0 22422 . . . . . . 7 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → (((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)))
216, 16, 20syl2anc 693 . . . . . 6 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)))
225adantr 481 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
23 simpll 790 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑁:𝑋⟶ℝ)
241, 2, 10tngnm 22455 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝑁 = (norm‘𝑇))
2522, 23, 24syl2anc 693 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑁 = (norm‘𝑇))
2625fveq1d 6193 . . . . . . 7 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑁𝑥) = ((norm‘𝑇)‘𝑥))
2726eqeq1d 2624 . . . . . 6 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → ((𝑁𝑥) = 0 ↔ ((norm‘𝑇)‘𝑥) = 0))
28 tngngp.z . . . . . . . . 9 0 = (0g𝐺)
291, 28tng0 22447 . . . . . . . 8 (𝑁 ∈ V → 0 = (0g𝑇))
3013, 29syl 17 . . . . . . 7 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 0 = (0g𝑇))
3130eqeq2d 2632 . . . . . 6 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑥 = 0𝑥 = (0g𝑇)))
3221, 27, 313bitr4d 300 . . . . 5 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
33 simpllr 799 . . . . . . . 8 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑇 ∈ NrmGrp)
3416adantr 481 . . . . . . . 8 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑥 ∈ (Base‘𝑇))
3515eleq2d 2687 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑦𝑋𝑦 ∈ (Base‘𝑇)))
3635biimpa 501 . . . . . . . 8 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑦 ∈ (Base‘𝑇))
37 eqid 2622 . . . . . . . . 9 (-g𝑇) = (-g𝑇)
3817, 18, 37nmmtri 22426 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇) ∧ 𝑦 ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝑥(-g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
3933, 34, 36, 38syl3anc 1326 . . . . . . 7 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((norm‘𝑇)‘(𝑥(-g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
40 tngngp.m . . . . . . . . . . 11 = (-g𝐺)
412, 15syl5eqr 2670 . . . . . . . . . . . 12 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (Base‘𝐺) = (Base‘𝑇))
42 eqid 2622 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
431, 42tngplusg 22446 . . . . . . . . . . . . 13 (𝑁 ∈ V → (+g𝐺) = (+g𝑇))
4413, 43syl 17 . . . . . . . . . . . 12 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (+g𝐺) = (+g𝑇))
4541, 44grpsubpropd 17520 . . . . . . . . . . 11 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (-g𝐺) = (-g𝑇))
4640, 45syl5eq 2668 . . . . . . . . . 10 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → = (-g𝑇))
4746oveqd 6667 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑥 𝑦) = (𝑥(-g𝑇)𝑦))
4825, 47fveq12d 6197 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑁‘(𝑥 𝑦)) = ((norm‘𝑇)‘(𝑥(-g𝑇)𝑦)))
4948adantr 481 . . . . . . 7 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑁‘(𝑥 𝑦)) = ((norm‘𝑇)‘(𝑥(-g𝑇)𝑦)))
5025fveq1d 6193 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑁𝑦) = ((norm‘𝑇)‘𝑦))
5126, 50oveq12d 6668 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → ((𝑁𝑥) + (𝑁𝑦)) = (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
5251adantr 481 . . . . . . 7 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑁𝑥) + (𝑁𝑦)) = (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
5339, 49, 523brtr4d 4685 . . . . . 6 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
5453ralrimiva 2966 . . . . 5 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
5532, 54jca 554 . . . 4 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
5655ralrimiva 2966 . . 3 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
575, 56jca 554 . 2 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
58 simprl 794 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝐺 ∈ Grp)
59 simpl 473 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝑁:𝑋⟶ℝ)
60 simpl 473 . . . . . 6 ((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
6160ralimi 2952 . . . . 5 (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋 ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
6261ad2antll 765 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → ∀𝑥𝑋 ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
63 fveq2 6191 . . . . . . 7 (𝑥 = 𝑎 → (𝑁𝑥) = (𝑁𝑎))
6463eqeq1d 2624 . . . . . 6 (𝑥 = 𝑎 → ((𝑁𝑥) = 0 ↔ (𝑁𝑎) = 0))
65 eqeq1 2626 . . . . . 6 (𝑥 = 𝑎 → (𝑥 = 0𝑎 = 0 ))
6664, 65bibi12d 335 . . . . 5 (𝑥 = 𝑎 → (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝑁𝑎) = 0 ↔ 𝑎 = 0 )))
6766rspccva 3308 . . . 4 ((∀𝑥𝑋 ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ 𝑎𝑋) → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 ))
6862, 67sylan 488 . . 3 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ 𝑎𝑋) → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 ))
69 simpr 477 . . . . . 6 ((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
7069ralimi 2952 . . . . 5 (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
7170ad2antll 765 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
72 oveq1 6657 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥 𝑦) = (𝑎 𝑦))
7372fveq2d 6195 . . . . . . 7 (𝑥 = 𝑎 → (𝑁‘(𝑥 𝑦)) = (𝑁‘(𝑎 𝑦)))
7463oveq1d 6665 . . . . . . 7 (𝑥 = 𝑎 → ((𝑁𝑥) + (𝑁𝑦)) = ((𝑁𝑎) + (𝑁𝑦)))
7573, 74breq12d 4666 . . . . . 6 (𝑥 = 𝑎 → ((𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ (𝑁‘(𝑎 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦))))
76 oveq2 6658 . . . . . . . 8 (𝑦 = 𝑏 → (𝑎 𝑦) = (𝑎 𝑏))
7776fveq2d 6195 . . . . . . 7 (𝑦 = 𝑏 → (𝑁‘(𝑎 𝑦)) = (𝑁‘(𝑎 𝑏)))
78 fveq2 6191 . . . . . . . 8 (𝑦 = 𝑏 → (𝑁𝑦) = (𝑁𝑏))
7978oveq2d 6666 . . . . . . 7 (𝑦 = 𝑏 → ((𝑁𝑎) + (𝑁𝑦)) = ((𝑁𝑎) + (𝑁𝑏)))
8077, 79breq12d 4666 . . . . . 6 (𝑦 = 𝑏 → ((𝑁‘(𝑎 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦)) ↔ (𝑁‘(𝑎 𝑏)) ≤ ((𝑁𝑎) + (𝑁𝑏))))
8175, 80rspc2va 3323 . . . . 5 (((𝑎𝑋𝑏𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝑁‘(𝑎 𝑏)) ≤ ((𝑁𝑎) + (𝑁𝑏)))
8281ancoms 469 . . . 4 ((∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎 𝑏)) ≤ ((𝑁𝑎) + (𝑁𝑏)))
8371, 82sylan 488 . . 3 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎 𝑏)) ≤ ((𝑁𝑎) + (𝑁𝑏)))
841, 2, 40, 28, 58, 59, 68, 83tngngpd 22457 . 2 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝑇 ∈ NrmGrp)
8557, 84impbida 877 1 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936   + caddc 9939  cle 10075  Basecbs 15857  +gcplusg 15941  distcds 15950  0gc0g 16100  Grpcgrp 17422  -gcsg 17424  Metcme 19732  normcnm 22381  NrmGrpcngp 22382   toNrmGrp ctng 22383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-tset 15960  df-ds 15964  df-rest 16083  df-topn 16084  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-tng 22389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator