MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0o1gt2 Structured version   Visualization version   GIF version

Theorem nn0o1gt2 15097
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o1gt2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))

Proof of Theorem nn0o1gt2
StepHypRef Expression
1 elnn0 11294 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnnnn0c 11338 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
3 1red 10055 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
4 nn0re 11301 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
53, 4leloed 10180 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
6 1zzd 11408 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → 1 ∈ ℤ)
7 nn0z 11400 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
8 zltp1le 11427 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
96, 7, 8syl2anc 693 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
10 1p1e2 11134 . . . . . . . . . . . . . 14 (1 + 1) = 2
1110breq1i 4660 . . . . . . . . . . . . 13 ((1 + 1) ≤ 𝑁 ↔ 2 ≤ 𝑁)
1211a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((1 + 1) ≤ 𝑁 ↔ 2 ≤ 𝑁))
13 2re 11090 . . . . . . . . . . . . . 14 2 ∈ ℝ
1413a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
1514, 4leloed 10180 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
169, 12, 153bitrd 294 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
17 olc 399 . . . . . . . . . . . . . 14 (2 < 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁))
18172a1d 26 . . . . . . . . . . . . 13 (2 < 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
19 oveq1 6657 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = 2 → (𝑁 + 1) = (2 + 1))
2019oveq1d 6665 . . . . . . . . . . . . . . . . . . 19 (𝑁 = 2 → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
2120eqcoms 2630 . . . . . . . . . . . . . . . . . 18 (2 = 𝑁 → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
2221adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
23 2p1e3 11151 . . . . . . . . . . . . . . . . . 18 (2 + 1) = 3
2423oveq1i 6660 . . . . . . . . . . . . . . . . 17 ((2 + 1) / 2) = (3 / 2)
2522, 24syl6eq 2672 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → ((𝑁 + 1) / 2) = (3 / 2))
2625eleq1d 2686 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (3 / 2) ∈ ℕ0))
27 3halfnz 11456 . . . . . . . . . . . . . . . 16 ¬ (3 / 2) ∈ ℤ
28 nn0z 11400 . . . . . . . . . . . . . . . . 17 ((3 / 2) ∈ ℕ0 → (3 / 2) ∈ ℤ)
2928pm2.24d 147 . . . . . . . . . . . . . . . 16 ((3 / 2) ∈ ℕ0 → (¬ (3 / 2) ∈ ℤ → (𝑁 = 1 ∨ 2 < 𝑁)))
3027, 29mpi 20 . . . . . . . . . . . . . . 15 ((3 / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))
3126, 30syl6bi 243 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
3231expcom 451 . . . . . . . . . . . . 13 (2 = 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3318, 32jaoi 394 . . . . . . . . . . . 12 ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3433com12 32 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ((2 < 𝑁 ∨ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3516, 34sylbid 230 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1 < 𝑁 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3635com12 32 . . . . . . . . 9 (1 < 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
37 orc 400 . . . . . . . . . . 11 (𝑁 = 1 → (𝑁 = 1 ∨ 2 < 𝑁))
3837eqcoms 2630 . . . . . . . . . 10 (1 = 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁))
39382a1d 26 . . . . . . . . 9 (1 = 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4036, 39jaoi 394 . . . . . . . 8 ((1 < 𝑁 ∨ 1 = 𝑁) → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4140com12 32 . . . . . . 7 (𝑁 ∈ ℕ0 → ((1 < 𝑁 ∨ 1 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
425, 41sylbid 230 . . . . . 6 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4342imp 445 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
442, 43sylbi 207 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
45 oveq1 6657 . . . . . . . 8 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
46 0p1e1 11132 . . . . . . . 8 (0 + 1) = 1
4745, 46syl6eq 2672 . . . . . . 7 (𝑁 = 0 → (𝑁 + 1) = 1)
4847oveq1d 6665 . . . . . 6 (𝑁 = 0 → ((𝑁 + 1) / 2) = (1 / 2))
4948eleq1d 2686 . . . . 5 (𝑁 = 0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (1 / 2) ∈ ℕ0))
50 halfnz 11455 . . . . . 6 ¬ (1 / 2) ∈ ℤ
51 nn0z 11400 . . . . . . 7 ((1 / 2) ∈ ℕ0 → (1 / 2) ∈ ℤ)
5251pm2.24d 147 . . . . . 6 ((1 / 2) ∈ ℕ0 → (¬ (1 / 2) ∈ ℤ → (𝑁 = 1 ∨ 2 < 𝑁)))
5350, 52mpi 20 . . . . 5 ((1 / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))
5449, 53syl6bi 243 . . . 4 (𝑁 = 0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
5544, 54jaoi 394 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
561, 55sylbi 207 . 2 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
5756imp 445 1 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  0cn0 11292  cz 11377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378
This theorem is referenced by:  nno  15098  nn0o  15099
  Copyright terms: Public domain W3C validator