![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zltp1le | Structured version Visualization version GIF version |
Description: Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
zltp1le | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1 11046 | . . . 4 ⊢ ((𝑁 − 𝑀) ∈ ℕ → 1 ≤ (𝑁 − 𝑀)) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 𝑀) ∈ ℕ → 1 ≤ (𝑁 − 𝑀))) |
3 | znnsub 11423 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | |
4 | zre 11381 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
5 | zre 11381 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
6 | 1re 10039 | . . . . 5 ⊢ 1 ∈ ℝ | |
7 | leaddsub2 10505 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) | |
8 | 6, 7 | mp3an2 1412 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) |
9 | 4, 5, 8 | syl2an 494 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) |
10 | 2, 3, 9 | 3imtr4d 283 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 → (𝑀 + 1) ≤ 𝑁)) |
11 | 4 | adantr 481 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ) |
12 | 11 | ltp1d 10954 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 < (𝑀 + 1)) |
13 | peano2re 10209 | . . . . 5 ⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ) | |
14 | 11, 13 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 1) ∈ ℝ) |
15 | 5 | adantl 482 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
16 | ltletr 10129 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 < 𝑁)) | |
17 | 11, 14, 15, 16 | syl3anc 1326 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 < 𝑁)) |
18 | 12, 17 | mpand 711 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 → 𝑀 < 𝑁)) |
19 | 10, 18 | impbid 202 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 class class class wbr 4653 (class class class)co 6650 ℝcr 9935 1c1 9937 + caddc 9939 < clt 10074 ≤ cle 10075 − cmin 10266 ℕcn 11020 ℤcz 11377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 |
This theorem is referenced by: zleltp1 11428 zlem1lt 11429 zgt0ge1 11431 nnltp1le 11433 nn0ltp1le 11435 btwnnz 11453 uzind2 11470 fzind 11475 eluzp1l 11712 eluz2b1 11759 zltaddlt1le 12324 fzsplit2 12366 m1modge3gt1 12717 bcval5 13105 seqcoll 13248 hashge2el2dif 13262 hashge2el2difr 13263 swrd2lsw 13695 2swrd2eqwrdeq 13696 isercoll 14398 nn0o1gt2 15097 divalglem6 15121 isprm3 15396 dvdsnprmd 15403 prmgt1 15409 oddprmge3 15412 hashdvds 15480 prmreclem5 15624 prmgaplem3 15757 prmgaplem5 15759 prmgaplem6 15760 prmgaplem8 15762 sylow1lem3 18015 chfacfscmul0 20663 chfacfscmulfsupp 20664 chfacfpmmul0 20667 chfacfpmmulfsupp 20668 dyaddisjlem 23363 plyeq0lem 23966 basellem2 24808 chtub 24937 bposlem9 25017 lgsdilem2 25058 lgsquadlem1 25105 2lgslem1a 25116 pntpbnd1 25275 pntpbnd2 25276 tgldimor 25397 eucrct2eupth 27105 konigsberglem5 27118 nndiffz1 29548 ltesubnnd 29568 dp2ltc 29594 smatrcl 29862 breprexplemc 30710 dnibndlem13 32480 knoppndvlem6 32508 poimirlem3 33412 poimirlem4 33413 poimirlem15 33424 poimirlem17 33426 poimirlem28 33437 ellz1 37330 lzunuz 37331 rmygeid 37531 jm3.1lem2 37585 bccbc 38544 elfzop1le2 39502 monoords 39511 fmul01lt1lem1 39816 dvnxpaek 40157 iblspltprt 40189 itgspltprt 40195 fourierdlem6 40330 fourierdlem12 40336 fourierdlem19 40343 fourierdlem42 40366 fourierdlem48 40371 fourierdlem49 40372 fourierdlem79 40402 iccpartiltu 41358 iccpartgt 41363 icceuelpartlem 41371 iccpartnel 41374 lighneallem4b 41526 evenltle 41626 gbowge7 41651 gbege6 41653 stgoldbwt 41664 sbgoldbwt 41665 sbgoldbalt 41669 sbgoldbm 41672 bgoldbtbndlem1 41693 tgblthelfgott 41703 tgblthelfgottOLD 41709 elfzolborelfzop1 42309 |
Copyright terms: Public domain | W3C validator |