MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmf Structured version   Visualization version   GIF version

Theorem nvmf 27500
Description: Mapping for the vector subtraction operation. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmf.1 𝑋 = (BaseSet‘𝑈)
nvmf.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvmf (𝑈 ∈ NrmCVec → 𝑀:(𝑋 × 𝑋)⟶𝑋)

Proof of Theorem nvmf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑋𝑦𝑋)) → 𝑈 ∈ NrmCVec)
2 simprl 794 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
3 neg1cn 11124 . . . . . . 7 -1 ∈ ℂ
4 nvmf.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
5 eqid 2622 . . . . . . . 8 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
64, 5nvscl 27481 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝑦𝑋) → (-1( ·𝑠OLD𝑈)𝑦) ∈ 𝑋)
73, 6mp3an2 1412 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (-1( ·𝑠OLD𝑈)𝑦) ∈ 𝑋)
87adantrl 752 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑋𝑦𝑋)) → (-1( ·𝑠OLD𝑈)𝑦) ∈ 𝑋)
9 eqid 2622 . . . . . 6 ( +𝑣𝑈) = ( +𝑣𝑈)
104, 9nvgcl 27475 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋 ∧ (-1( ·𝑠OLD𝑈)𝑦) ∈ 𝑋) → (𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦)) ∈ 𝑋)
111, 2, 8, 10syl3anc 1326 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑋𝑦𝑋)) → (𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦)) ∈ 𝑋)
1211ralrimivva 2971 . . 3 (𝑈 ∈ NrmCVec → ∀𝑥𝑋𝑦𝑋 (𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦)) ∈ 𝑋)
13 eqid 2622 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦)))
1413fmpt2 7237 . . 3 (∀𝑥𝑋𝑦𝑋 (𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦)) ∈ 𝑋 ↔ (𝑥𝑋, 𝑦𝑋 ↦ (𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))):(𝑋 × 𝑋)⟶𝑋)
1512, 14sylib 208 . 2 (𝑈 ∈ NrmCVec → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))):(𝑋 × 𝑋)⟶𝑋)
16 nvmf.3 . . . 4 𝑀 = ( −𝑣𝑈)
174, 9, 5, 16nvmfval 27499 . . 3 (𝑈 ∈ NrmCVec → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))))
1817feq1d 6030 . 2 (𝑈 ∈ NrmCVec → (𝑀:(𝑋 × 𝑋)⟶𝑋 ↔ (𝑥𝑋, 𝑦𝑋 ↦ (𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))):(𝑋 × 𝑋)⟶𝑋))
1915, 18mpbird 247 1 (𝑈 ∈ NrmCVec → 𝑀:(𝑋 × 𝑋)⟶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  cc 9934  1c1 9937  -cneg 10267  NrmCVeccnv 27439   +𝑣 cpv 27440  BaseSetcba 27441   ·𝑠OLD cns 27442  𝑣 cnsb 27444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455
This theorem is referenced by:  nvmcl  27501  imsdval  27541  imsdf  27544  sspm  27589  hhssvsf  28130
  Copyright terms: Public domain W3C validator