Proof of Theorem nvmdi
| Step | Hyp | Ref
| Expression |
| 1 | | simpr1 1067 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ ℂ) |
| 2 | | simpr2 1068 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
| 3 | | neg1cn 11124 |
. . . . . . 7
⊢ -1 ∈
ℂ |
| 4 | | nvmdi.1 |
. . . . . . . 8
⊢ 𝑋 = (BaseSet‘𝑈) |
| 5 | | nvmdi.4 |
. . . . . . . 8
⊢ 𝑆 = (
·𝑠OLD ‘𝑈) |
| 6 | 4, 5 | nvscl 27481 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈
ℂ ∧ 𝐶 ∈
𝑋) → (-1𝑆𝐶) ∈ 𝑋) |
| 7 | 3, 6 | mp3an2 1412 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋) → (-1𝑆𝐶) ∈ 𝑋) |
| 8 | 7 | 3ad2antr3 1228 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (-1𝑆𝐶) ∈ 𝑋) |
| 9 | 1, 2, 8 | 3jca 1242 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋)) |
| 10 | | eqid 2622 |
. . . . 5
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
| 11 | 4, 10, 5 | nvdi 27485 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋)) → (𝐴𝑆(𝐵( +𝑣 ‘𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣 ‘𝑈)(𝐴𝑆(-1𝑆𝐶)))) |
| 12 | 9, 11 | syldan 487 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵( +𝑣 ‘𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣 ‘𝑈)(𝐴𝑆(-1𝑆𝐶)))) |
| 13 | 4, 5 | nvscom 27484 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ -1 ∈
ℂ ∧ 𝐶 ∈
𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶))) |
| 14 | 3, 13 | mp3anr2 1422 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶))) |
| 15 | 14 | 3adantr2 1221 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(-1𝑆𝐶)) = (-1𝑆(𝐴𝑆𝐶))) |
| 16 | 15 | oveq2d 6666 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)( +𝑣 ‘𝑈)(𝐴𝑆(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣 ‘𝑈)(-1𝑆(𝐴𝑆𝐶)))) |
| 17 | 12, 16 | eqtrd 2656 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵( +𝑣 ‘𝑈)(-1𝑆𝐶))) = ((𝐴𝑆𝐵)( +𝑣 ‘𝑈)(-1𝑆(𝐴𝑆𝐶)))) |
| 18 | | nvmdi.3 |
. . . . 5
⊢ 𝑀 = ( −𝑣
‘𝑈) |
| 19 | 4, 10, 5, 18 | nvmval 27497 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝑀𝐶) = (𝐵( +𝑣 ‘𝑈)(-1𝑆𝐶))) |
| 20 | 19 | 3adant3r1 1274 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝑀𝐶) = (𝐵( +𝑣 ‘𝑈)(-1𝑆𝐶))) |
| 21 | 20 | oveq2d 6666 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = (𝐴𝑆(𝐵( +𝑣 ‘𝑈)(-1𝑆𝐶)))) |
| 22 | | simpl 473 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝑈 ∈ NrmCVec) |
| 23 | 4, 5 | nvscl 27481 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴𝑆𝐵) ∈ 𝑋) |
| 24 | 23 | 3adant3r3 1276 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆𝐵) ∈ 𝑋) |
| 25 | 4, 5 | nvscl 27481 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ 𝑋) → (𝐴𝑆𝐶) ∈ 𝑋) |
| 26 | 25 | 3adant3r2 1275 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆𝐶) ∈ 𝑋) |
| 27 | 4, 10, 5, 18 | nvmval 27497 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝑆𝐵) ∈ 𝑋 ∧ (𝐴𝑆𝐶) ∈ 𝑋) → ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)) = ((𝐴𝑆𝐵)( +𝑣 ‘𝑈)(-1𝑆(𝐴𝑆𝐶)))) |
| 28 | 22, 24, 26, 27 | syl3anc 1326 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶)) = ((𝐴𝑆𝐵)( +𝑣 ‘𝑈)(-1𝑆(𝐴𝑆𝐶)))) |
| 29 | 17, 21, 28 | 3eqtr4d 2666 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵𝑀𝐶)) = ((𝐴𝑆𝐵)𝑀(𝐴𝑆𝐶))) |