MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprringb Structured version   Visualization version   GIF version

Theorem opprringb 18632
Description: Bidirectional form of opprring 18631. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprringb (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring)

Proof of Theorem opprringb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3 𝑂 = (oppr𝑅)
21opprring 18631 . 2 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
3 eqid 2622 . . . 4 (oppr𝑂) = (oppr𝑂)
43opprring 18631 . . 3 (𝑂 ∈ Ring → (oppr𝑂) ∈ Ring)
5 eqidd 2623 . . . . 5 (⊤ → (Base‘𝑅) = (Base‘𝑅))
6 eqid 2622 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
71, 6opprbas 18629 . . . . . . 7 (Base‘𝑅) = (Base‘𝑂)
83, 7opprbas 18629 . . . . . 6 (Base‘𝑅) = (Base‘(oppr𝑂))
98a1i 11 . . . . 5 (⊤ → (Base‘𝑅) = (Base‘(oppr𝑂)))
10 eqid 2622 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
111, 10oppradd 18630 . . . . . . . 8 (+g𝑅) = (+g𝑂)
123, 11oppradd 18630 . . . . . . 7 (+g𝑅) = (+g‘(oppr𝑂))
1312oveqi 6663 . . . . . 6 (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑂))𝑦)
1413a1i 11 . . . . 5 ((⊤ ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑂))𝑦))
15 eqid 2622 . . . . . . . 8 (.r𝑂) = (.r𝑂)
16 eqid 2622 . . . . . . . 8 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
177, 15, 3, 16opprmul 18626 . . . . . . 7 (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥)
18 eqid 2622 . . . . . . . 8 (.r𝑅) = (.r𝑅)
196, 18, 1, 15opprmul 18626 . . . . . . 7 (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦)
2017, 19eqtr2i 2645 . . . . . 6 (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦)
2120a1i 11 . . . . 5 ((⊤ ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
225, 9, 14, 21ringpropd 18582 . . . 4 (⊤ → (𝑅 ∈ Ring ↔ (oppr𝑂) ∈ Ring))
2322trud 1493 . . 3 (𝑅 ∈ Ring ↔ (oppr𝑂) ∈ Ring)
244, 23sylibr 224 . 2 (𝑂 ∈ Ring → 𝑅 ∈ Ring)
252, 24impbii 199 1 (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wtru 1484  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Ringcrg 18547  opprcoppr 18622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623
This theorem is referenced by:  opprdrng  18771  opprsubrg  18801  rhmopp  29819
  Copyright terms: Public domain W3C validator