| Step | Hyp | Ref
| Expression |
| 1 | | opprbas.1 |
. . . 4
⊢ 𝑂 =
(oppr‘𝑅) |
| 2 | | eqid 2622 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 3 | 1, 2 | opprbas 18629 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑂) |
| 4 | 3 | a1i 11 |
. 2
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘𝑂)) |
| 5 | | eqid 2622 |
. . . 4
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 6 | 1, 5 | oppradd 18630 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑂) |
| 7 | 6 | a1i 11 |
. 2
⊢ (𝑅 ∈ Ring →
(+g‘𝑅) =
(+g‘𝑂)) |
| 8 | | eqidd 2623 |
. 2
⊢ (𝑅 ∈ Ring →
(.r‘𝑂) =
(.r‘𝑂)) |
| 9 | | ringgrp 18552 |
. . 3
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 10 | 3, 6 | grpprop 17438 |
. . 3
⊢ (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp) |
| 11 | 9, 10 | sylib 208 |
. 2
⊢ (𝑅 ∈ Ring → 𝑂 ∈ Grp) |
| 12 | | eqid 2622 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 13 | | eqid 2622 |
. . . 4
⊢
(.r‘𝑂) = (.r‘𝑂) |
| 14 | 2, 12, 1, 13 | opprmul 18626 |
. . 3
⊢ (𝑥(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑥) |
| 15 | 2, 12 | ringcl 18561 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
| 16 | 15 | 3com23 1271 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
| 17 | 14, 16 | syl5eqel 2705 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)𝑦) ∈ (Base‘𝑅)) |
| 18 | | simpl 473 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring) |
| 19 | | simpr3 1069 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅)) |
| 20 | | simpr2 1068 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) |
| 21 | | simpr1 1067 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) |
| 22 | 2, 12 | ringass 18564 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) |
| 23 | 18, 19, 20, 21, 22 | syl13anc 1328 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) |
| 24 | 23 | eqcomd 2628 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥)) |
| 25 | 14 | oveq1i 6660 |
. . . 4
⊢ ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧) |
| 26 | 2, 12, 1, 13 | opprmul 18626 |
. . . 4
⊢ ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥)) |
| 27 | 25, 26 | eqtri 2644 |
. . 3
⊢ ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥)) |
| 28 | 2, 12, 1, 13 | opprmul 18626 |
. . . . 5
⊢ (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦) |
| 29 | 28 | oveq2i 6661 |
. . . 4
⊢ (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧)) = (𝑥(.r‘𝑂)(𝑧(.r‘𝑅)𝑦)) |
| 30 | 2, 12, 1, 13 | opprmul 18626 |
. . . 4
⊢ (𝑥(.r‘𝑂)(𝑧(.r‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥) |
| 31 | 29, 30 | eqtri 2644 |
. . 3
⊢ (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥) |
| 32 | 24, 27, 31 | 3eqtr4g 2681 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧))) |
| 33 | 2, 5, 12 | ringdir 18567 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥))) |
| 34 | 18, 20, 19, 21, 33 | syl13anc 1328 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥))) |
| 35 | 2, 12, 1, 13 | opprmul 18626 |
. . 3
⊢ (𝑥(.r‘𝑂)(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥) |
| 36 | 2, 12, 1, 13 | opprmul 18626 |
. . . 4
⊢ (𝑥(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑥) |
| 37 | 14, 36 | oveq12i 6662 |
. . 3
⊢ ((𝑥(.r‘𝑂)𝑦)(+g‘𝑅)(𝑥(.r‘𝑂)𝑧)) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥)) |
| 38 | 34, 35, 37 | 3eqtr4g 2681 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑂)𝑦)(+g‘𝑅)(𝑥(.r‘𝑂)𝑧))) |
| 39 | 2, 5, 12 | ringdi 18566 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) |
| 40 | 18, 19, 21, 20, 39 | syl13anc 1328 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) |
| 41 | 2, 12, 1, 13 | opprmul 18626 |
. . 3
⊢ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)) |
| 42 | 36, 28 | oveq12i 6662 |
. . 3
⊢ ((𝑥(.r‘𝑂)𝑧)(+g‘𝑅)(𝑦(.r‘𝑂)𝑧)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦)) |
| 43 | 40, 41, 42 | 3eqtr4g 2681 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑂)𝑧) = ((𝑥(.r‘𝑂)𝑧)(+g‘𝑅)(𝑦(.r‘𝑂)𝑧))) |
| 44 | | eqid 2622 |
. . 3
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 45 | 2, 44 | ringidcl 18568 |
. 2
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
| 46 | 2, 12, 1, 13 | opprmul 18626 |
. . 3
⊢
((1r‘𝑅)(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)(1r‘𝑅)) |
| 47 | 2, 12, 44 | ringridm 18572 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥) |
| 48 | 46, 47 | syl5eq 2668 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑂)𝑥) = 𝑥) |
| 49 | 2, 12, 1, 13 | opprmul 18626 |
. . 3
⊢ (𝑥(.r‘𝑂)(1r‘𝑅)) = ((1r‘𝑅)(.r‘𝑅)𝑥) |
| 50 | 2, 12, 44 | ringlidm 18571 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
| 51 | 49, 50 | syl5eq 2668 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)(1r‘𝑅)) = 𝑥) |
| 52 | 4, 7, 8, 11, 17, 32, 38, 43, 45, 48, 51 | isringd 18585 |
1
⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |