![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolf | Structured version Visualization version GIF version |
Description: The domain and range of the outer volume function. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.) |
Ref | Expression |
---|---|
ovolf | ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 11974 | . . . 4 ⊢ < Or ℝ* | |
2 | 1 | infex 8399 | . . 3 ⊢ inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑥 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) ∈ V |
3 | df-ovol 23233 | . . 3 ⊢ vol* = (𝑥 ∈ 𝒫 ℝ ↦ inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑥 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < )) | |
4 | 2, 3 | fnmpti 6022 | . 2 ⊢ vol* Fn 𝒫 ℝ |
5 | elpwi 4168 | . . . 4 ⊢ (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ) | |
6 | ovolcl 23246 | . . . . 5 ⊢ (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ ℝ*) | |
7 | ovolge0 23249 | . . . . 5 ⊢ (𝑥 ⊆ ℝ → 0 ≤ (vol*‘𝑥)) | |
8 | pnfge 11964 | . . . . . 6 ⊢ ((vol*‘𝑥) ∈ ℝ* → (vol*‘𝑥) ≤ +∞) | |
9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝑥 ⊆ ℝ → (vol*‘𝑥) ≤ +∞) |
10 | 0xr 10086 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
11 | pnfxr 10092 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
12 | elicc1 12219 | . . . . . 6 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol*‘𝑥) ∈ (0[,]+∞) ↔ ((vol*‘𝑥) ∈ ℝ* ∧ 0 ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ≤ +∞))) | |
13 | 10, 11, 12 | mp2an 708 | . . . . 5 ⊢ ((vol*‘𝑥) ∈ (0[,]+∞) ↔ ((vol*‘𝑥) ∈ ℝ* ∧ 0 ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ≤ +∞)) |
14 | 6, 7, 9, 13 | syl3anbrc 1246 | . . . 4 ⊢ (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ (0[,]+∞)) |
15 | 5, 14 | syl 17 | . . 3 ⊢ (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ∈ (0[,]+∞)) |
16 | 15 | rgen 2922 | . 2 ⊢ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) ∈ (0[,]+∞) |
17 | ffnfv 6388 | . 2 ⊢ (vol*:𝒫 ℝ⟶(0[,]+∞) ↔ (vol* Fn 𝒫 ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) ∈ (0[,]+∞))) | |
18 | 4, 16, 17 | mpbir2an 955 | 1 ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 {crab 2916 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 class class class wbr 4653 × cxp 5112 ran crn 5115 ∘ ccom 5118 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 supcsup 8346 infcinf 8347 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 +∞cpnf 10071 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 − cmin 10266 ℕcn 11020 (,)cioo 12175 [,]cicc 12178 seqcseq 12801 abscabs 13974 vol*covol 23231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ico 12181 df-icc 12182 df-fz 12327 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-ovol 23233 |
This theorem is referenced by: ismbl 23294 volf 23297 ovolfs2 23339 ismbl3 40203 ovolsplit 40205 |
Copyright terms: Public domain | W3C validator |